8,327 research outputs found

    Group Theoretical Foundations of Fractional Supersymmetry

    Get PDF
    Fractional supersymmetry denotes a generalisation of supersymmetry which may be constructed using a single real generalised Grassmann variable, ξ=ξˉ, ξn=0\theta = \bar{\theta}, \, \theta^n = 0, for arbitrary integer n=2,3,...n = 2, 3, .... An explicit formula is given in the case of general nn for the transformations that leave the theory invariant, and it is shown that these transformations possess interesting group properties. It is shown also that the two generalised derivatives that enter the theory have a geometric interpretation as generators of left and right transformations of the fractional supersymmetry group. Careful attention is paid to some technically important issues, including differentiation, that arise as a result of the peculiar nature of quantities such as ξ\theta.Comment: Plain Latex, 18 page

    Effective actions, relative cohomology and Chern Simons forms

    Full text link
    The explicit expression of all the WZW effective actions for a simple group G broken down to a subgroup H is established in a simple and direct way, and the formal similarity of these actions to the Chern-Simons forms is explained. Applications are also discussed.Comment: 11 pages. Latex2e file. Published versio

    Direct measurement of penetration length in ultra-thin and/or mesoscopic superconducting structures

    Get PDF
    We describe a method for direct measurement of the magnetic penetration length in thin (10 - 100 nm) superconducting structures having overall dimensions in the range 1 to 100 micrometers. The method is applicable for broadband magnetic fields from dc to MHz frequencies.Comment: Accepted by Journal of Applied P:hysics (Jun 2006).5 pages, 5 figure

    Geometrical foundations of fractional supersymmetry

    Get PDF
    A deformed qq-calculus is developed on the basis of an algebraic structure involving graded brackets. A number operator and left and right shift operators are constructed for this algebra, and the whole structure is related to the algebra of a qq-deformed boson. The limit of this algebra when qq is a nn-th root of unity is also studied in detail. By means of a chain rule expansion, the left and right derivatives are identified with the charge QQ and covariant derivative DD encountered in ordinary/fractional supersymmetry and this leads to new results for these operators. A generalized Berezin integral and fractional superspace measure arise as a natural part of our formalism. When qq is a root of unity the algebra is found to have a non-trivial Hopf structure, extending that associated with the anyonic line. One-dimensional ordinary/fractional superspace is identified with the braided line when qq is a root of unity, so that one-dimensional ordinary/fractional supersymmetry can be viewed as invariance under translation along this line. In our construction of fractional supersymmetry the qq-deformed bosons play a role exactly analogous to that of the fermions in the familiar supersymmetric case.Comment: 42 pages, LaTeX. To appear in Int. J. Mod. Phys.

    Self-reported pain severity is associated with a history of coronary heart disease

    Get PDF
    This study was funded by Arthritis Research UK (grant number: 17292).Peer reviewedPublisher PD

    Supersymmetry of parafermions

    Get PDF
    We show that the single-mode parafermionic type systems possess supersymmetry, which is based on the symmetry of characteristic functions of the parafermions related to the generalized deformed oscillator of Daskaloyannis et al. The supersymmetry is realized in both unbroken and spontaneously broken phases. As in the case of parabosonic supersymmetry observed recently by one of the authors, the form of the associated superalgebra depends on the order of the parafermion and can be linear or nonlinear in the Hamiltonian. The list of supersymmetric parafermionic systems includes usual parafermions, finite-dimensional q-deformed oscillator, q-deformed parafermionic oscillator and parafermionic oscillator with internal Z2Z_2 structure.Comment: 14 pages, reference and comment added. To appear in Mod. Phys. Lett.

    q-Symmetries in DNLS-AL chains and exact solutions of quantum dimers

    Get PDF
    Dynamical symmetries of Hamiltonians quantized models of discrete non-linear Schroedinger chain (DNLS) and of Ablowitz-Ladik chain (AL) are studied. It is shown that for nn-sites the dynamical algebra of DNLS Hamilton operator is given by the su(n)su(n) algebra, while the respective symmetry for the AL case is the quantum algebra su_q(n). The q-deformation of the dynamical symmetry in the AL model is due to the non-canonical oscillator-like structure of the raising and lowering operators at each site. Invariants of motions are found in terms of Casimir central elements of su(n) and su_q(n) algebra generators, for the DNLS and QAL cases respectively. Utilizing the representation theory of the symmetry algebras we specialize to the n=2n=2 quantum dimer case and formulate the eigenvalue problem of each dimer as a non-linear (q)-spin model. Analytic investigations of the ensuing three-term non-linear recurrence relations are carried out and the respective orthonormal and complete eigenvector bases are determined. The quantum manifestation of the classical self-trapping in the QDNLS-dimer and its absence in the QAL-dimer, is analysed by studying the asymptotic attraction and repulsion respectively, of the energy levels versus the strength of non-linearity. Our treatment predicts for the QDNLS-dimer, a phase-transition like behaviour in the rate of change of the logarithm of eigenenergy differences, for values of the non-linearity parameter near the classical bifurcation point.Comment: Latex, 19pp, 4 figures. Submitted for publicatio
    • 

    corecore