39,175 research outputs found
Physical parameters in the hot spots and jets of Compact Symmetric Objects
We present a model to determine the physical parameters of jets and hot spots
of a sample of CSOs under very basic assumptions like synchrotron emission and
minimum energy conditions. Based on this model we propose a simple evolutionary
scenario for these sources assuming that they evolve in ram pressure
equilibrium with the external medium and constant jet power. The parameters of
our model are constrained from fits of observational data (radio luminosity,
hot spot radius and hot spot advance speed) versus projected linear size. From
these plots we conclude that CSOs evolve self-similarly and that their radio
luminosity increases with linear size along the first kiloparsec. Assuming that
the jets feeding CSOs are relativistic from both kinematical and
thermodynamical points of view, we use the values of the pressure and particle
number density within the hot spots to estimate the fluxes of momentum
(thrust), energy, and particles of these relativistic jets. The mean jet power
obtained in this way is within an order of magnitude that inferred for FRII
sources, which is consistent with CSOs being the possible precursors of large
doubles. The inferred flux of particles corresponds to, for a barionic jet,
about a 10% of the mass accreted by a black hole of at
the Eddington limit, pointing towards a very efficient conversion of accretion
flow into ejection, or to a leptonic composition of jets.Comment: 11 pages, 2 figures. Accepted for publication in Astrophysical
Journa
Forecasting cosmological constraints from age of high-z galaxies
We perform Monte Carlo simulations based on current age estimates of high-z
objects to forecast constraints on the equation of state (EoS) of the dark
energy. In our analysis, we use two different EoS parameterizations, namely,
the so-called CPL and its uncorrelated form and calculate the improvements on
the figure of merit for both cases. Although there is a clear dependence of the
FoM with the size and accuracy of the synthetic age samples, we find that the
most substantial gain in FoM comes from a joint analysis involving age and
baryon acoustic oscillation data.Comment: 4 pages, 13 figures, late
Non-Linear Supersymmetric -Models and their Gauging in the Atiyah-Ward Space-Time
We present a supersymmetric non-linear \s-model built up in the
superspace of Atiyah-Ward space-time. A manifold of the K\"ahler type comes out
that is restricted by a particular decomposition of the K\"ahler potential. The
gauging of the \s-model isometries is also accomplished in superspace.Comment: 15 pages, Latex, no figure
- …