6,242 research outputs found

    Flow cytometric detection of gamma interferon can effectively discriminate Mycobacterium bovis BCG-vaccinated cattle from M. bovis-infected cattle

    Get PDF
    Mycobacterium bovis is the causative agent of bovine tuberculosis, a disease that is increasing in incidence in United Kingdom cattle herds. In addition to increasing economic losses, the rise in bovine tuberculosis poses a human health risk. There is an urgent requirement for effective strategies for disease eradication; this will likely involve vaccination in conjunction with current test and slaughter policies. A policy involving vaccination would require an accurate diagnosis of M. bovis-infected animals and the potential to distinguish these animals from vaccinates. Currently used diagnostic tests, the skin test and gamma interferon (IFN-Ī³) blood test, have a sensitivity of up to 95%. A further complication is that M. bovis BCG-vaccinated animals are also scored positive by these tests. We tested the hypothesis that the quantification of IFN-Ī³-producing lymphocytes by flow cytometric analysis of intracellular IFN-Ī³ expression would provide a more accurate discrimination of M. bovis-infected animals from BCG vaccinates. Significant numbers of IFN-Ī³-expressing CD4(+) T cells were detected following culture of heparinized blood from M. bovis-infected animals, but not from BCG vaccinates, with purified protein derived from M. bovis (PPD-B) or live mycobacteria. Only 1 of 17 BCG-vaccinated animals had a significant number of CD4(+) T lymphocytes expressing IFN-Ī³, compared with 21/22 M. bovis-infected animals. This assay could allow an accurate diagnosis of M. bovis and allow the discrimination of BCG-vaccinated cattle from infected cattle

    The Born and Markov approximations for atom lasers

    Full text link
    We discuss the use of the Born and Markov approximations in describing the dynamics of an atom laser. In particular, we investigate the applicability of the quantum optical Born-Markov master equation for describing output coupling. We derive conditions based on the atomic reservoir, and atom dispersion relations for when the Born-Markov approximations are valid and discuss parameter regimes where these approximations fail in our atom laser model. Differences between the standard optical laser model and the atom laser are due to a combination of factors, including the parameter regimes in which a typical atom laser would operate, the different reservoir state which is appropriate for atoms, and the different dispersion relations between atoms and photons. We present results based on an exact method in the regimes in which the Born-Markov approximation fails. The exact solutions in some experimentally relavent parameter regimes give non-exponential loss of atoms from a cavity.Comment: 10 pages, 3 figures. (2 new figues). Exact solutions have been included in section II. Sections IV and V have been expanded. A new section discussing the effects of gravity has been include

    Sequential Implementation of Monte Carlo Tests with Uniformly Bounded Resampling Risk

    Full text link
    This paper introduces an open-ended sequential algorithm for computing the p-value of a test using Monte Carlo simulation. It guarantees that the resampling risk, the probability of a different decision than the one based on the theoretical p-value, is uniformly bounded by an arbitrarily small constant. Previously suggested sequential or non-sequential algorithms, using a bounded sample size, do not have this property. Although the algorithm is open-ended, the expected number of steps is finite, except when the p-value is on the threshold between rejecting and not rejecting. The algorithm is suitable as standard for implementing tests that require (re-)sampling. It can also be used in other situations: to check whether a test is conservative, iteratively to implement double bootstrap tests, and to determine the sample size required for a certain power.Comment: Major Revision 15 pages, 4 figure

    Stability of continuously pumped atom lasers

    Get PDF
    A multimode model of a continuously pumped atom laser is shown to be unstable below a critical value of the scattering length. Above the critical scattering length, the atom laser reaches a steady state, the stability of which increases with pumping. Below this limit the laser does not reach a steady state. This instability results from the competition between gain and loss for the excited states of the lasing mode. It will determine a fundamental limit for the linewidth of an atom laser beam.Comment: 4 page

    Fast gates for ion traps by splitting laser pulses

    Get PDF
    We present a fast phase gate scheme that is experimentally achievable and has an operation time more than two orders of magnitude faster than current experimental schemes for low numbers of pulses. The gate time improves with the number of pulses following an inverse power law. Unlike implemented schemes which excite precise motional sidebands, thus limiting the gate timescale, our scheme excites multiple motional states using discrete ultra-fast pulses.We use beam-splitters to divide pulses into smaller components to overcome limitations due to the finite laser pulse repetition rate. This provides gate times faster than proposed theoretical schemes when we optimize a practical setup

    Classical noise and flux: the limits of multi-state atom lasers

    Get PDF
    By direct comparison between experiment and theory, we show how the classical noise on a multi-state atom laser beam increases with increasing flux. The trade off between classical noise and flux is an important consideration in precision interferometric measurement. We use periodic 10 microsecond radio-frequency pulses to couple atoms out of an F=2 87Rb Bose-Einstein condensate. The resulting atom laser beam has suprising structure which is explained using three dimensional simulations of the five state Gross-Pitaevskii equations.Comment: 4 pages, 3 figure

    The Role of Sociopolitical Attitudes and Civic Education in the Civic Engagement of Black Youth

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108311/1/jora12117.pd

    Collapsing Bose-Einstein condensates beyond the Gross-Pitaevskii approximation

    Full text link
    We analyse quantum field models of the bosenova experiment, in which 85^{85}Rb Bose-Einstein condensates were made to collapse by switching their atomic interactions from repulsive to attractive. Specifically, we couple the lowest order quantum field correlation functions to the Gross-Pitaevskii function, and solve the resulting dynamical system numerically. Comparing the computed collapse times with the experimental measurements, we find that the calculated times are much larger than the measured values. The addition of quantum field corrections does not noticeably improve the agreement compared to a pure Gross-Pitaevskii theory.Comment: 8 pages, 4 figure
    • ā€¦
    corecore