20,436 research outputs found

    Direct measurement of penetration length in ultra-thin and/or mesoscopic superconducting structures

    Get PDF
    We describe a method for direct measurement of the magnetic penetration length in thin (10 - 100 nm) superconducting structures having overall dimensions in the range 1 to 100 micrometers. The method is applicable for broadband magnetic fields from dc to MHz frequencies.Comment: Accepted by Journal of Applied P:hysics (Jun 2006).5 pages, 5 figure

    Edge state effects in junctions with graphene electrodes

    Get PDF
    We consider plane junctions with graphene electrodes, which are formed by a single-level system ("molecule") placed between the edges of two single-layer graphene half planes. We calculate the edge Green functions of the electrodes and the corresponding lead self-energies for the molecular levels in the cases of semi-infinite single-layer electrodes with armchair and zigzag edges. We show two main effects: first, a peculiar energy-dependent level broadening, reflecting at low energies the linear energy dependence of the bulk density of states in graphene, and, second, the shift and splitting of the molecular level energy, especially pronounced in the case of the zigzag edges due to the influence of the edge states. These effects give rise to peculiar conductance features at finite bias and gate voltages.Comment: 8 pages, 8 figures, submitted to PR

    Tracing potential energy surfaces of electronic excitations via their transition origins: application to Oxirane

    Get PDF
    We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a widerange of molecular geometries. This is achieved by locating the switching of transition origins of adiabatic potential surfaces as the geometry changes. The transition vectors for analysing transition origins are provided by linear response time-dependent density functional theory (TDDFT) calculations under the Tamm-Dancoff approximation. We study the photochemical CO ring opening of oxirane as an example and show that the results corroborate the traditional Gomer-Noyes mechanism derived experimentally. The knowledge of specific states for the reaction also agrees well with that given by previous theoretical work using TDDFT surface-hopping dynamics that was validated by high-quality quantum Monte Carlo calculations. We also show that QNTO can be useful for considerably larger and more complex systems: by projecting the excitations to those of a reference oxirane molecule, the approach is able to identify and analyse specific excitations of a trans-2,3-diphenyloxirane molecule.Comment: 14 pages, 12 figure
    • …
    corecore