445 research outputs found
Planar Laser Induced Fluorescence Mapping of a Carbon Laser Produced Plasma
We present measurements of ion velocity distribution profiles obtained by
laser induced fluorescence (LIF) on an explosive laser produced plasma (LPP).
The spatio-temporal evolution of the resulting carbon ion velocity distribution
was mapped by scanning through the Doppler-shifted absorption wavelengths using
a tunable, diode-pumped laser. The acquisition of this data was facilitated by
the high repetition rate capability of the ablation laser (1 Hz) which allowed
the accumulation of thousand of laser shots in short experimental times. By
varying the intensity of the LIF beam, we were able to explore the effects of
fluorescence power against laser irradiance in the context of evaluating the
saturation versus the non-saturation regime. The small beam size of the LIF
beam led to high spatial resolution of the measurement compared to other ion
velocity distribution measurement techniques, while the fast-gated operation
mode of the camera detector enabled the measurement of the relevant electron
transitions
Neoclassical Theory of Elementary Charges with Spin of 1/2
We advance here our neoclassical theory of elementary charges by integrating
into it the concept of spin of 1/2. The developed spinorial version of our
theory has many important features identical to those of the Dirac theory such
as the gyromagnetic ratio, expressions for currents including the spin current,
and antimatter states. In our theory the concepts of charge and anticharge
relate naturally to their "spin" in its rest frame in two opposite directions.
An important difference with the Dirac theory is that both the charge and
anticharge energies are positive whereas their frequencies have opposite signs
Lightlike infinity in GCA models of Spacetime
This paper discusses a 7 dimensional conformal geometric algebra model for
spacetime based on the notion that spacelike and timelike infinities are
distinct. I show how naturally of the dimensions represents the lightlike
infinity and appears redundant in computations, yet usefull in interpretationComment: 12 page
Cartoon Computation: Quantum-like computing without quantum mechanics
We present a computational framework based on geometric structures. No
quantum mechanics is involved, and yet the algorithms perform tasks analogous
to quantum computation. Tensor products and entangled states are not needed --
they are replaced by sets of basic shapes. To test the formalism we solve in
geometric terms the Deutsch-Jozsa problem, historically the first example that
demonstrated the potential power of quantum computation. Each step of the
algorithm has a clear geometric interpetation and allows for a cartoon
representation.Comment: version accepted in J. Phys.A (Letter to the Editor
A holistic multi-methodology for sustainable renovation
A review of the barriers for building renovation has revealed a lack of methodologies, which can promote sustainability objectives and assist various stakeholders during the design stage of building renovation/retrofitting projects. The purpose of this paper is to develop a Holistic Multi-methodology for Sustainable Renovation, which aims to deal with complexity of renovation projects. It provides a framework through which to involve the different stakeholders in the design process to improve group learning and group decision-making, and hence make the building renovation design process more robust and efficient. Therefore, the paper discusses the essence of multifaceted barriers in building renovation regarding cultural changes and technological/physical changes. The outcome is a proposal for a multi-methodology framework, which is developed by introducing, evaluating and mixing methods from Soft Systems Methodologies (SSM) with Multiple Criteria Decision Making (MCDM). The potential of applying the proposed methodology in renovation projects is demonstrated through a case study
Membraneless channels sieve cations in ammonia-oxidizing marine archaea
Nitrosopumilus maritimus is an ammonia-oxidizing archaeon that is crucial to the global nitrogen cycle1, 2. A critical step for nitrogen oxidation is the entrapment of ammonium ions from a dilute marine environment at the cell surface and their subsequent channelling to the cell membrane of N. maritimus. Here we elucidate the structure of the molecular machinery responsible for this process, comprising the surface layer (S-layer), using electron cryotomography and subtomogram averaging from cells. We supplemented our in situ structure of the ammonium-binding S-layer array with a single-particle electron cryomicroscopy structure, revealing detailed features of this immunoglobulin-rich and glycan-decorated S-layer. Biochemical analyses showed strong ammonium binding by the cell surface, which was lost after S-layer disassembly. Sensitive bioinformatic analyses identified similar S-layers in many ammonia-oxidizing archaea, with conserved sequence and structural characteristics. Moreover, molecular simulations and structure determination of ammonium-enriched specimens enabled us to examine the cation-binding properties of the S-layer, revealing how it concentrates ammonium ions on its cell-facing side, effectively acting as a multichannel sieve on the cell membrane. This in situ structural study illuminates the biogeochemically essential process of ammonium binding and channelling, common to many marine microorganisms that are fundamental to the nitrogen cycle
Analyzing three-player quantum games in an EPR type setup
We use the formalism of Clifford Geometric Algebra (GA) to develop an
analysis of quantum versions of three-player non-cooperative games. The quantum
games we explore are played in an Einstein-Podolsky-Rosen (EPR) type setting.
In this setting, the players' strategy sets remain identical to the ones in the
mixed-strategy version of the classical game that is obtained as a proper
subset of the corresponding quantum game. Using GA we investigate the outcome
of a realization of the game by players sharing GHZ state, W state, and a
mixture of GHZ and W states. As a specific example, we study the game of
three-player Prisoners' Dilemma.Comment: 21 pages, 3 figure
- …