468 research outputs found

    An efficient numerical approach to modeling the effects of particle shape on rubble-pile dynamics

    Full text link
    We present an approach for the inclusion of non-spherical constituents in high-resolution N-body discrete element method (DEM) simulations. We use aggregates composed of bonded spheres to model non-spherical components. Though the method may be applied more generally, we detail our implementation in the existing N-body code pkdgrav. It has long been acknowledged that non-spherical grains confer additional shear strength and resistance to flow when compared with spheres. As a result, we expect that rubble-pile asteroids will also exhibit these properties and may behave differently than comparable rubble piles composed of idealized spheres. Since spherical particles avoid some significant technical challenges, most DEM gravity codes have used only spherical particles, or have been confined to relatively low resolutions. We also discuss the work that has gone into improving performance with non-spherical grains, building on pkdgrav's existing leading-edge computational efficiency among DEM gravity codes. This allows for the addition of non-spherical shapes while maintaining the efficiencies afforded by pkdgrav's tree implementation and parallelization. As a test, we simulated the gravitational collapse of 25,000 non-spherical bodies in parallel. In this case, the efficiency improvements allowed for an increase in speed by nearly a factor of three when compared with the naive implementation. Without these enhancements, large runs with non-spherical components would remain prohibitively expensive. Finally, we present the results of several small-scale tests: spinup due to the YORP effect, tidal encounters, and the Brazil-nut Effect. In all cases, we find that the inclusion of non-spherical constituents has a measurable impact on simulation outcomes.Comment: 35 pages, 8 figure

    Lung cancer induced in mice by the envelope protein of jaagsiekte sheep retrovirus (JSRV) closely resembles lung cancer in sheep infected with JSRV

    Get PDF
    BACKGROUND: Jaagsiekte sheep retrovirus (JSRV) causes a lethal lung cancer in sheep and goats. Expression of the JSRV envelope (Env) protein in mouse lung, by using a replication-defective adeno-associated virus type 6 (AAV6) vector, induces tumors resembling those seen in sheep. However, the mouse and sheep tumors have not been carefully compared to determine if Env expression alone in mice can account for the disease features observed in sheep, or whether additional aspects of virus replication in sheep are important, such as oncogene activation following retrovirus integration into the host cell genome. RESULTS: We have generated mouse monoclonal antibodies (Mab) against JSRV Env and have used these to study mouse and sheep lung tumor histology. These Mab detect Env expression in tumors in sheep infected with JSRV from around the world with high sensitivity and specificity. Mouse and sheep tumors consisted mainly of well-differentiated adenomatous foci with little histological evidence of anaplasia, but at long times after vector exposure some mouse tumors did have a more malignant appearance typical of adenocarcinoma. In addition to epithelial cell tumors, lungs of three of 29 sheep examined contained fibroblastic cell masses that expressed Env and appeared to be separate neoplasms. The Mab also stained nasal adenocarcinoma tissue from one United States sheep, which we show was due to expression of Env from ovine enzootic nasal tumor virus (ENTV), a virus closely related to JSRV. Systemic administration of the AAV6 vector encoding JSRV Env to mice produced numerous hepatocellular tumors, and some hemangiomas and hemangiosarcomas, showing that the Env protein can induce tumors in multiple cell types. CONCLUSION: Lung cancers induced by JSRV infection in sheep and by JSRV Env expression in mice have similar histologic features and are primarily characterized by adenomatous proliferation of peripheral lung epithelial cells. Thus it is unnecessary to invoke a role for insertional mutagenesis, gene activation, viral replication, or expression of other viral gene products in sheep lung tumorigenesis, although these processes may play a role in other clinically less important sequelae of JSRV infection such as metastasis observed with variable frequency in sheep

    Probabilistic Quantum Logic Operations Using Polarizing Beam Splitters

    Full text link
    It has previously been shown that probabilistic quantum logic operations can be performed using linear optical elements, additional photons (ancilla), and post-selection based on the output of single-photon detectors. Here we describe the operation of several quantum logic operations of an elementary nature, including a quantum parity check and a quantum encoder, and we show how they can be combined to implement a controlled-NOT (CNOT) gate. All of these gates can be constructed using polarizing beam splitters that completely transmit one state of polarization and totally reflect the orthogonal state of polarization, which allows a simple explanation of each operation. We also describe a polarizing beam splitter implementation of a CNOT gate that is closely analogous to the quantum teleportation technique previously suggested by Gottesman and Chuang [Nature 402, p.390 (1999)]. Finally, our approach has the interesting feature that it makes practical use of a quantum-eraser technique.Comment: 9 pages, RevTex; Submitted to Phys. Rev. A; additional references inlcude

    Single Photons on Pseudo-Demand from Stored Parametric Down-Conversion

    Full text link
    We describe the results of a parametric down-conversion experiment in which the detection of one photon of a pair causes the other photon to be switched into a storage loop. The stored photon can then be switched out of the loop at a later time chosen by the user, providing a single photon for potential use in a variety of quantum information processing applications. Although the stored single photon is only available at periodic time intervals, those times can be chosen to match the cycle time of a quantum computer by using pulsed down-conversion. The potential use of the storage loop as a photonic quantum memory device is also discussed.Comment: 8 pages, 7 Figs., RevTe

    Demonstration of Feed-Forward Control for Linear Optics Quantum Computation

    Get PDF
    One of the main requirements in linear optics quantum computing is the ability to perform single-qubit operations that are controlled by classical information fed forward from the output of single photon detectors. These operations correspond to pre-determined combinations of phase corrections and bit-flips that are applied to the post-selected output modes of non-deterministic quantum logic devices. Corrections of this kind are required in order to obtain the correct logical output for certain detection events, and their use can increase the overall success probability of the devices. In this paper, we report on the experimental demonstration of the use of this type of feed-forward system to increase the probability of success of a simple non-deterministic quantum logic operation from approximately 1/4 to 1/2. This logic operation involves the use of one target qubit and one ancilla qubit which, in this experiment, are derived from a parametric down-conversion photon pair. Classical information describing the detection of the ancilla photon is fed-forward in real-time and used to alter the quantum state of the output photon. A fiber optic delay line is used to store the output photon until a polarization-dependent phase shift can be applied using a high speed Pockels cell

    Probing the quantum vacuum with an artificial atom in front of a mirror

    Full text link
    Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a very real impact, \emph{e.g.}, in the Casimir effects and the lifetimes of atoms. Engineering vacuum fluctuations is therefore becoming increasingly important to emerging technologies. Here, we shape vacuum fluctuations using a "mirror", creating regions in space where they are suppressed. As we then effectively move an artificial atom in and out of these regions, measuring the atomic lifetime tells us the strength of the fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a factor of 50 below what would be expected without the mirror, demonstrating that we can hide the atom from the vacuum

    Stimulated emission of polarization-entangled photons

    Get PDF
    Entangled photon pairs -- discrete light quanta that exhibit non-classical correlations -- play a crucial role in quantum information science (for example in demonstrations of quantum non-locality and quantum cryptography). At the macroscopic optical field level non-classical correlations can also be important, as in the case of squeezed light, entangled light beams and teleportation of continuous quantum variables. Here we use stimulated parametric down-conversion to study entangled states of light that bridge the gap between discrete and macroscopic optical quantum correlations. We demonstrate experimentally the onset of laser-like action for entangled photons. This entanglement structure holds great promise in quantum information science where there is a strong demand for entangled states of increasing complexity.Comment: 5 pages, 4 figures, RevTeX

    Dynamic Collective Entity Representations for Entity Ranking

    Get PDF
    Entity ranking, i.e., successfully positioning a relevant entity at the top of the ranking for a given query, is inherently difficult due to the potential mismatch between the entity's description in a knowledge base, and the way people refer to the entity when searching for it. To counter this issue we propose a method for constructing dynamic collective entity representations. We collect entity descriptions from a variety of sources and combine them into a single entity representation by learning to weight the content from different sources that are associated with an entity for optimal retrieval effectiveness. Our method is able to add new descriptions in real time and learn the best representation as time evolves so as to capture the dynamics of how people search entities. Incorporating dynamic description sources into dynamic collective entity representations improves retrieval effectiveness by 7% over a state-of-the-art learning to rank baseline. Periodic retraining of the ranker enables higher ranking effectiveness for dynamic collective entity representations

    Pain from a Bullet Lingers on: An Uncommon Case of Lead Toxicity

    Get PDF
    Lead toxicity from a retained bullet as a cause for abdominal pain is rarely considered. Given its unpredictable latent period and nonspecific clinical symptoms, such cases are difficult to diagnose but may be fatal if unrecognized. We present the case of a 48-year-old man who presented with complaints of abdominal pain, weight loss and constipation. His past history was significant for a gunshot wound to the left hip about 20 years before. Radiographic studies confirmed the same with the presence of numerous intra-articular bullet fragments and a calcified hemarthrosis surrounding the left femoral head. Blood lead levels were elevated following which the patient was started on chelation therapy with succimer which resulted in symptomatic improvement. The aim of this paper is to highlight the importance of considering lead toxicity from a retained bullet as a cause of abdominal pain and to review the relevant literature
    • …
    corecore