551 research outputs found

    Near-Infrared Mass Loss Diagnostics for Massive Stars

    Get PDF
    Stellar wind mass loss is a key process which modifies surface abundances, luminosities, and other physical properties of hot, massive stars. Furthermore, mass loss has to be understood quantitatively in order to accurately describe and predict massive star evolution. Two urgent problems have been identified that challenge our understanding of line-driven winds, the so-called weak-wind problem and wind clumping. In both cases, mass-loss rates are drastically lower than theoretically expected (up to a factor 1001). Here we study how the expected spectroscopic capabilities of the James Webb Space Telescope (JWST), especially NIRSpec, could be used to significantly improve constraints on wind density structures (clumps) and deep-seated phenomena in stellar winds of massive stars, including OB, Wolf-Rayet and LBV stars. Since the IR continuum of objects with strong winds is formed in the wind, IR lines may sample different depths inside the wind than UV-optical lines and provide new information about the shape of the velocity field and clumping properties. One of the most important applications of IR line diagnostics will be the measurement of mass-loss rates in massive stars with very weak winds by means of the H I Bracket alpha line, which has been identified as one of the most promising diagnostics for this problem

    Properties of massive stars in four clusters of the VVV survey

    Full text link
    The evolution of massive stars is only partly understood. Observational constraints can be obtained from the study of massive stars located in young massive clusters. The ESO Public Survey VISTA Variables in the Via Lactea (VVV) discovered several new clusters hosting massive stars. We present an analysis of massive stars in four of these new clusters. Our aim is to provide constraints on stellar evolution and to better understand the relation between different types of massive stars. We use the radiative transfer code CMFGEN to analyse K-band spectra of twelve stars with spectral types ranging from O and B to WN and WC. We derive the stellar parameters of all targets as well as surface abundances for a subset of them. In the Hertzsprung-Russell diagram, the Wolf-Rayet stars are more luminous or hotter than the O stars. From the log(C/N) - log(C/He) diagram, we show quantitatively that WN stars are more chemically evolved than O stars, WC stars being more evolved than WN stars. Mass loss rates among Wolf-Rayet stars are a factor of 10 larger than for O stars, in agreement with previous findings.Comment: paper accepted in New Astronom

    Radial dependence of line profile variability in seven O9--B0.5 stars

    Full text link
    Massive stars show a variety of spectral variability: presence of discrete absorption components in UV P-Cygni profiles, optical line profile variability, X-ray variability, radial velocity modulations. Our goal is to study the spectral variability of single OB stars to better understand the relation between photospheric and wind variability. For that, we rely on high spectral resolution, high signal-to-noise ratio optical spectra collected with the spectrograph NARVAL on the Telescope Bernard Lyot at Pic du Midi. We investigate the variability of twelve spectral lines by means of the Temporal Variance Spectrum (TVS). The selected lines probe the radial structure of the atmosphere, from the photosphere to the outer wind. We also perform a spectroscopic analysis with atmosphere models to derive the stellar and wind properties, and to constrain the formation region of the selected lines. We show that variability is observed in the wind lines of all bright giants and supergiants, on a daily timescale. Lines formed in the photosphere are sometimes variable, sometimes not. The dwarf stars do not show any sign of variability. If variability is observed on a daily timescale, it can also (but not always) be observed on hourly timescales, albeit with lower amplitude. There is a very clear correlation between amplitude of the variability and fraction of the line formed in the wind. Strong anti-correlations between the different part of the temporal variance spectrum are observed. Our results indicate that variability is stronger in lines formed in the wind. A link between photospheric and wind variability is not obvious from our study, since wind variability is observed whatever the level of photospheric variability. Different photospheric lines also show different degrees of variability.Comment: 13 pages, 9 figures + appendix. A&A accepted. Figures degraded for arxiv submissio

    Observational effects of magnetism in O stars: surface nitrogen abundances

    Get PDF
    We investigate the surface nitrogen content of the six magnetic O stars known to date as well as of the early B-type star tau Sco. We compare these abundances to predictions of evolutionary models to isolate the effects of magnetic field on the transport of elements in stellar interiors. We conduct a quantitative spectroscopic analysis of the sample stars with state-of-the-art atmosphere models. We rely on high signal-to-noise ratio, high resolution optical spectra obtained with ESPADONS at CFHT and NARVAL at TBL. Atmosphere models and synthetic spectra are computed with the code CMFGEN. Values of N/H together with their uncertainties are determined and compared to predictions of evolutionary models. We find that the magnetic stars can be divided into two groups: one with stars displaying no N enrichment (one object); and one with stars most likely showing extra N enrichment (5 objects). For one star (Theta1 Ori C) no robust conclusion can be drawn due to its young age. The star with no N enrichment is the one with the weakest magnetic field, possibly of dynamo origin. It might be a star having experienced strong magnetic braking under the condition of solid body rotation, but its rotational velocity is still relatively large. The five stars with high N content were probably slow rotators on the zero age main sequence, but they have surface N/H typical of normal O stars, indicating that the presence of a (probably fossil) magnetic field leads to extra enrichment. These stars may have a strong differential rotation inducing shear mixing. Our results should be viewed as a basis on which new theoretical simulations can rely to better understand the effect of magnetism on the evolution of massive stars.Comment: 14 pages, 6 figures. Accepted by A&

    The magnetic field of zeta Orionis A

    Full text link
    Zeta Ori A is a hot star claimed to host a weak magnetic field, but no clear magnetic detection was obtained so far. In addition, it was recently shown to be a binary system composed of a O9.5I supergiant and a B1IV star. We aim at verifying the presence of a magnetic field in zeta Ori A, identifying to which of the two binary components it belongs (or whether both stars are magnetic), and characterizing the field.Very high signal-to-noise spectropolarimetric data were obtained with Narval at the Bernard Lyot Telescope (TBL) in France. Archival HEROS, FEROS and UVES spectroscopic data were also used. The data were first disentangled to separate the two components. We then analyzed them with the Least-Squares Deconvolution (LSD) technique to extract the magnetic information. We confirm that zeta Ori A is magnetic. We find that the supergiant component zeta Ori Aa is the magnetic component: Zeeman signatures are observed and rotational modulation of the longitudinal magnetic field is clearly detected with a period of 6.829 d. This is the only magnetic O supergiant known as of today. With an oblique dipole field model of the Stokes V profiles, we show that the polar field strength is ~ 140 G. Because the magnetic field is weak and the stellar wind is strong, zeta Ori Aa does not host a centrifugally supported magnetosphere. It may host a dynamical magnetosphere. Its companion zeta Ori Ab does not show any magnetic signature, with an upper limit on the undetected field of ∌\sim 300 G

    Properties of WNh stars in the Small Magellanic Cloud: evidence for homogeneous evolution

    Full text link
    We derive the physical properties of three WNh stars in the SMC to constrain stellar evolution beyond the main sequence at low metallicity and to investigate the metallicity dependence of the clumping properties of massive stars. We compute atmosphere models to derive the stellar and wind properties of the three WNh targets. A FUV/UV/optical/near-infrared analysis gives access to temperatures, luminosities, mass loss rates, terminal velocities and stellar abundances. All stars still have a large hydrogen mass fraction in their atmosphere, and show clear signs of CNO processing in their surface abundances. One of the targets can be accounted for by normal stellar evolution. It is a star with initial mass around 40-50 Msun in, or close to, the core He burning phase. The other two objects must follow a peculiar evolution, governed by fast rotation. In particular, one object is likely evolving homogeneously due to its position blue-ward of the main sequence and its high H mass fraction. The clumping factor of one star is found to be 0.15+/-0.05. This is comparable to values found for Galactic Wolf-Rayet stars, indicating that within the uncertainties, the clumping factor does not seem to depend on metallicity.Comment: 16 pages. A&A accepte

    On The Importance Of The Interclump Medium For Superionization: O VI Formation In The Wind Of Zeta Puppis

    Get PDF
    We have studied superionization and X-ray line formation in the spectra of zeta Pup using our new stellar atmosphere code (XCMFGEN) that can be used to simultaneously analyze optical, UV, and X-ray observations. Here, we present results on the formation of the O VI lambda lambda 1032, 1038 doublet. Our simulations, supported by simple theoretical calculations, show that clumped wind models that assume void in the interclump space cannot reproduce the observed O vi profiles. However, enough O vi can be produced if the voids are filled by a low-density gas. The recombination of O vi is very efficient in the dense material, but in the tenuous interclump region an observable amount of O vi can be maintained. We also find that different UV resonance lines are sensitive to different density regimes in z Pup: C IV is almost exclusively formed within the densest regions, while the majority of O vi resides between clumps. N v is an intermediate case, with contributions from both the tenuous gas and clumps

    Mid-IR observations of Galactic HII regions: constraining ionizing spectra of massive stars and the nature of the observed excitation sequences

    Full text link
    Extensive photoionization model grids for single star HII regions using a variety of recent state-of-the-art stellar atmosphere models have been computed with the main aim of constraining/testing their predicted ionizing spectra against recent ISO mid-IR observations of Galactic HII regions, which probe the ionizing spectra between ~ 24 and 41 eV thanks to Ne, Ar, and S fine structure lines. Particular care has been paid to examining in detail the dependences of the nebular properties on the numerous nebular parameters (mean ionization parameter U, abundances, dust etc.) which are generally unconstrained for the objects considered here. Finally we have examined which parameters are chiefly responsible for the observed mid-IR excitation sequences. The galactic gradient of metallicity changing the shape of the stellar emission is found to be one of the drivers for the excitation sequence of Galactic HII regions, the actual contribution of this effect being finally atmosphere model dependent. We find that the dispersion of Teff between different HII regions due to statistical sampling of the IMF plus additional scatter in the ionization parameter are probably the dominant driver for the observed excitation scatter.Comment: Accepted for publication in A&

    Line Emission from Gas in Optically Thick Dust Disks around Young Stars

    Full text link
    We present self-consistent models of gas in optically-thick dusty disks and calculate its thermal, density and chemical structure. The models focus on an accurate treatment of the upper layers where line emission originates, and at radii ≳0.7\gtrsim 0.7 AU. We present results of disks around ∌1M⊙\sim 1{\rm M}_{\odot} stars where we have varied dust properties, X-ray luminosities and UV luminosities. We separately treat gas and dust thermal balance, and calculate line luminosities at infrared and sub-millimeter wavelengths from all transitions originating in the predominantly neutral gas that lies below the ionized surface of the disk. We find that the [ArII] 7ÎŒ\mum, [NeII] 12.8ÎŒ\mum, [FeI] 24ÎŒ\mum, [SI] 25ÎŒ\mum, [FeII] 26ÎŒ\mum, [SiII] 35 ÎŒ\mum, [OI] 63ÎŒ\mum and pure rotational lines of H2_2, H2_2O and CO can be quite strong and are good indicators of the presence and distribution of gas in disks. We apply our models to the disk around the nearby young star, TW Hya, and find good agreement between our model calculations and observations. We also predict strong emission lines from the TW Hya disk that are likely to be detected by future facilities. A comparison of CO observations with our models suggests that the gas disk around TW Hya may be truncated to ∌120\sim 120 AU, compared to its dust disk of 174 AU. We speculate that photoevaporation due to the strong stellar FUV field from TW Hya is responsible for the gas disk truncation.Comment: Accepted to Astrophysical Journa

    Magnetism, rotation and accretion in Herbig Ae-Be stars

    Full text link
    Studies of stellar magnetism at the pre-main sequence phase can provide important new insights into the detailed physics of the late stages of star formation, and into the observed properties of main sequence stars. This is especially true at intermediate stellar masses, where magnetic fields are strong and globally organised, and therefore most amenable to direct study. This talk reviews recent high-precision ESPaDOnS observations of pre-main sequence Herbig Ae-Be stars, which are yielding qualitatively new information about intermediate-mass stars: the origin and evolution of their magnetic fields, the role of magnetic fields in generating their spectroscopic activity and in mediating accretion in their late formative stages, and the factors influencing their rotational angular momentum.Comment: 8 page
    • 

    corecore