37 research outputs found

    Detection of immune-complex-dissociated nonstructural-1 antigen in patients with acute dengue virus infections

    Get PDF
    Accurate and timely diagnosis of dengue virus (DEN) infections is essential for the differential diagnosis of patients with febrile illness and hemorrhagic fever. In the present study, the diagnostic value of a newly developed immune-complex dissociated nonstructural-1 (NS-1) antigen dot blot immunoassay (DBI) was compared to a commercially available DEN antigen detection kit (denKEY Blue kit; Globio Co., Beverly, Mass.) and a reverse transcription-PCR (RT-PCR) kit. Serial serum or plasma samples (n = 181) obtained from 55 acute DEN-infected patients were used. In samples obtained from 32 of these 55 DEN-infected patients, viral RNA could be detected by RT-PCR. DEN antigen was detected in only 10 of these 55 patient samples by using the denKEY kit. When these samples were treated with acid to release the immune-complex-associated NS-1 antigen for detection by DBI, 43 of these 55 patients were found to be positive for DEN NS-1 antigen. In nondiss

    Optical creation of vibrational intrinsic localized modes in anharmonic lattices with realistic interatomic potentials

    Full text link
    Using an efficient optimal control scheme to determine the exciting fields, we theoretically demonstrate the optical creation of vibrational intrinsic localized modes (ILMs) in anharmonic perfect lattices with realistic interatomic potentials. For systems with finite size, we show that ILMs can be excited directly by applying a sequence of femtosecond visible laser pulses at THz repetition rates. For periodic lattices, ILMs can be created indirectly via decay of an unstable extended lattice mode which is excited optically either by a sequence of pulses as described above or by a single picosecond far-infrared laser pulse with linearly chirped frequency. In light of recent advances in experimental laser pulse shaping capabilities, the approach is experimentally promising.Comment: 20 pages, 7 eps figures. Accepted, Phys. Rev.

    Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor.

    Get PDF
    Competence is a physiological state, distinct from sporulation and vegetative growth, that enables cells to bind and internalize transforming DNA. The transcriptional regulator ComK drives the development of competence in Bacillus subtilis. ComK is directly required for its own transcription as well as for the transcription of the genes that encode DNA transport proteins. When ComK is sequestered by binding to a complex of the proteins MecA and ClpC, the positive feedback loop leading to ComK synthesis is interrupted. The small protein ComS, produced as a result of signaling by a quorum-sensing two-component regulatory pathway, triggers the release of ComK from the complex, enabling comK transcription to occur. We show here, based on in vivo and in vitro experiments, that ComK accumulation is also regulated by proteolysis and that binding to MecA targets ComK for degradation by the ClpP protease in association with ClpC. The release of ComK from binding by MecA and ClpC, which occurs when ComS is synthesized, protects ComK from proteolysis. Following this release, the rates of MecA and ComS degradation by ClpCP are increased in our in vitro system. In this novel system, MecA serves to recruit ComK to the ClpCP protease and connects ComK degradation to the quorum-sensing signal-transduction pathway, thereby regulating a key developmental process. This is the first regulated degradation system in which a specific targeting molecule serves such a function

    Antagonistic sensory cues generate gustatory plasticity in Caenorhabditis elegans

    No full text
    Caenorhabditis elegans shows chemoattraction to 0.1–200 mM NaCl, avoidance of higher NaCl concentrations, and avoidance of otherwise attractive NaCl concentrations after prolonged exposure to NaCl (gustatory plasticity). Previous studies have shown that the ASE and ASH sensory neurons primarily mediate attraction and avoidance of NaCl, respectively. Here we show that balances between at least four sensory cell types, ASE, ASI, ASH, ADF and perhaps ADL, modulate the response to NaCl. Our results suggest that two NaCl-attraction signalling pathways exist, one of which uses Ca(2+)/cGMP signalling. In addition, we provide evidence that attraction to NaCl is antagonised by G-protein signalling in the ASH neurons, which is desensitised by the G-protein-coupled receptor kinase GRK-2. Finally, the response to NaCl is modulated by G-protein signalling in the ASI and ADF neurons, a second G-protein pathway in ASH and cGMP signalling in neurons exposed to the body fluid

    Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Get PDF
    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913-at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length. © 2014 Author(s)
    corecore