617 research outputs found

    A method for investigating age-related differences in the functional connectivity of cognitive control networks associated with dimensional change card sort performance

    Get PDF
    The ability to adjust behavior to sudden changes in the environment develops gradually in childhood and adolescence. For example, in the Dimensional Change Card Sort task, participants switch from sorting cards one way, such as shape, to sorting them a different way, such as color. Adjusting behavior in this way exacts a small performance cost, or switch cost, such that responses are typically slower and more error-prone on switch trials in which the sorting rule changes as compared to repeat trials in which the sorting rule remains the same. The ability to flexibly adjust behavior is often said to develop gradually, in part because behavioral costs such as switch costs typically decrease with increasing age. Why aspects of higher-order cognition, such as behavioral flexibility, develop so gradually remains an open question. One hypothesis is that these changes occur in association with functional changes in broad-scale cognitive control networks. On this view, complex mental operations, such as switching, involve rapid interactions between several distributed brain regions, including those that update and maintain task rules, re-orient attention, and select behaviors. With development, functional connections between these regions strengthen, leading to faster and more efficient switching operations. The current video describes a method of testing this hypothesis through the collection and multivariate analysis of fMRI data from participants of different ages

    Sex Differences in Self-Regulation: An Evolutionary Perspective

    Get PDF
    Bjorklund and Kipp (1996) provide an evolutionary framework predicting that there is a female advantage in inhibition and self-regulation due to differing selection pressures placed on males and females. The majority of the present review will summarize sex differences in self-regulation at the behavioral level. The neural and hormonal underpinnings of this potential sexual dimorphism will also be investigated and the results of the experiments summarized will be related to the hypothesis advanced by Bjorklund and Kipp (1996). Paradoxically, sex differences in self-regulation are more consistently reported in children prior to the onset of puberty. In adult cohorts, the results of studies examining sex differences in self-regulation are mixed. A few recent experiments suggesting that females are less impulsive than males only during fertile stages of the menstrual cycle will be reviewed. A brief discussion of an evolutionary framework proposing that it is adaptive for females to employ a self-regulatory behavioral strategy when fertile will follow

    Tracking the brain’s functional coupling dynamics over development

    Get PDF
    The transition from childhood to adulthood is marked by pronounced functional and structural brain transformations that impact cognition and behavior. Here, we use a functional imaging approach to reveal dynamic changes in coupling strength between networks and the expression of discrete brain configurations over human development during rest and a cognitive control task. Although the brain’s repertoire of functional states was generally preserved across ages, state-specific temporal features, such as the frequency of expression and the amount of time spent in select states, varied by age in ways that were dependent on condition. Increasing age was associated with greater variability of connection strengths across time at rest, while there was a selective inversion of this effect in higher-order networks during implementation of cognitive control. The results suggest that development is characterized by the modification of dynamic coupling to both maximize and constrain functional variability in response to ongoing cognitive and behavioral requirements

    It’s a Matter of Time: Reframing the Development of Cognitive Control as a Modification of the Brain’s Temporal Dynamics

    Get PDF
    Cognitive control is a process that unfolds over time and regulates thought and action in the service of achieving goals and managing unanticipated challenges. Prevailing accounts attribute the protracted development of this mental process to incremental changes in the functional organization of a cognitive control network. Here, we challenge the notion that cognitive control is linked to a topologically static network, and argue that the capacity to manage unanticipated challenges and its development should instead be characterized in terms of inter-regional functional coupling dynamics. Ongoing changes in temporal coupling have long represented a fundamental pillar in both empirical and theoretical-based accounts of brain function, but have been largely ignored by traditional neuroimaging methods that assume a fixed functional architecture. There is, however, a growing recognition of the importance of temporal coupling dynamics for brain function, and this has led to rapid innovations in analytic methods. Results in this new frontier of neuroimaging suggest that time-varying changes in connectivity strength and direction exist at the large scale and further, that network patterns, like cognitive control process themselves, are transient and dynamic

    Sequential congruency effects in monolingual and bilingual adults: A failure to replicate Grundy et al. (2017)

    Get PDF
    Previous research suggests bilingual adults show smaller sequential congruency effects than monolingual adults. Here we re-examined these findings by administering an Eriksen flanker task to monolingual and bilingual adults. The task produced robust conventional and sequential congruency effects. Neither effect differed for monolingual and bilingual adults. Results are discussed in terms of current debates concerning differences in cognitive control between monolingual and bilingual adults

    Behavioral sleep problems and their potential impact on developing executive function in children

    Get PDF
    Bedtime resistance and night waking are common sleep problems throughout childhood, especially in the early years. These sleep problems may lead to difficulties in neurobehavioral functioning, but most research into childhood sleep problems has not emphasized the importance of the developmental context in which disruptions in neurobehavioral and daytime functioning occur. We review the development of sleep as well as executive functioning (EF) in childhood and suggest that EF may be particularly vulnerable to the effects of these common childhood sleep problems because of its prolonged course of maturation. Behavioral problems associated with common sleep problems suggest poor self-regulation in the context of sleep loss, and developing EF skills play important roles in self-regulation. A research agenda that considers a developmental approach to sleep and sleep problems in the context of childhood EF performance is outlined to promote future research in this area

    The differential calibration of the HPA axis as a function of trauma versus adversity: A systematic review and p-curve meta-analyses

    Get PDF
    Although there is an abundance of evidence linking the function of the hypothalamic-pituitary-adrenal (HPA) axis to adverse early-life experiences, the precise nature of the association remains unclear. Some evidence suggests early-life adversity leads to cortisol hyper-reactivity, while other evidence suggests adversity leads to cortisol hypo-reactivity. Here, we distinguish between trauma and adversity, and use p-curves to interrogate the conflicting literature. In Study 1, trauma was operationalized according to DSM-5 criteria; the p-curve analysis included 68 articles and revealed that the literature reporting associations between trauma and blunted cortisol reactivity contains evidential value. Study 2 examined the relationship between adversity and cortisol reactivity. Thirty articles were included in the analysis, and p-curve demonstrated that adversity is related to heightened cortisol reactivity. These results support an inverted U-shaped function relating severity of adversity and cortisol reactivity, and underscore the importance of distinguishing between “trauma” and “adversity”

    Cognitive control: Easy to identify but hard to define

    Get PDF
    Cognitive control is easy to identify in its effects, but difficult to grasp conceptually. This creates somewhat of a puzzle: Is cognitive control a bona fide process or an epiphenomenon that merely exists in the mind of the observer? The topiCS special edition on cognitive control presents a broad set of perspectives on this issue and helps to clarify central conceptual and empirical challenges confronting the field. Our commentary provides a summary of and critical response to each of the papers. © 2011 Cognitive Science Society, Inc

    The Bilingual Advantage in Children’s Executive Functioning Is Not Related to Language Status: A Meta-Analytic Review

    Get PDF
    There is considerable debate about whether bilingual children have an advantage in executive functioning relative to monolingual children. In the current meta-analysis, we addressed this debate by comprehensively reviewing the available evidence. We synthesized data from published studies and unpublished data sets, which equated to 1,194 effect sizes from 10,937 bilingual and 12,477 monolingual participants between the ages of 3 and 17 years. Bilingual language status had a small overall effect on children’s executive functioning (g =.08, 95% confidence interval = [.01,.14]). However, the effect of language status on children’s executive functioning was indistinguishable from zero (g = −.04) after we adjusted for publication bias. Further, no significant effects were apparent within the executive-attention domain, in which the effects of language status have been hypothesized to be most pronounced (g =.06, 95% confidence interval = [−.02,.14]). Taken together, available evidence suggests that the bilingual advantage in children’s executive functioning is small, variable, and potentially not attributable to the effect of language status

    Surprise and error: Common neuronal architecture for the processing of errors and novelty

    Get PDF
    According to recent accounts, the processing of errors and generally infrequent, surprising (novel) events share a common neuroanat-omical substrate. Direct empirical evidence for this common processing network in humans is, however, scarce. To test this hypothesis, we administered a hybrid error-monitoring/novelty-oddball task in which the frequency of novel, surprising trials was dynamically matched to the frequency of errors. Using scalp electroencephalographic recordings and event-related functional magnetic resonance imaging (fMRI), we compared neural responses to errors with neural responses to novel events. In Experiment 1, independent component analysis of scalp ERP data revealed a common neural generator implicated in the generation of both the error-related negativity (ERN) and the novelty-related frontocentral N2. In Experiment 2, this pattern was confirmed by a conjunction analysis of event-related fMRI, which showed significantly elevated BOLD activity following both types of trials in the posterior medial frontal cortex, including the anterior midcingulate cortex (aMCC), the neuronal generator of the ERN. Together, these findings provide direct evidence of a common neural system underlying the processing of errors and novel events. This appears to be at odds with prominent theories of the ERN and aMCC. Inparticular, there inforcement learning theory of the ERN may need to be modified because it may not suffice as a fully integrative model of aMCC function. Whenever course and outcome of anaction violates expectancies (not necessarily related to reward), the aMCC seems to be engaged in evaluating the necessity of behavioral adaptation. © 2012 the authors
    • 

    corecore