403 research outputs found

    Characterization and modeling of a hybrid electric vehicle lithium-ion battery pack at low temperatures

    Get PDF
    Although lithium-ion batteries have penetrated hybrid electric vehicles (HEVs) and pure electric vehicles (EVs), they suffer from significant power capability losses and reduced energy at low temperatures. To evaluate those losses and to make an efficient design, good models are required for system simulation. Subzero battery operation involves nonclassical thermal behavior. Consequently, simple electrical models are not sufficient to predict bad performance or damage to systems involving batteries at subzero temperatures. This paper presents the development of an electrical and thermal model of an HEV lithium-ion battery pack. This model has been developed with MATLAB/Simulink to investigate the output characteristics of lithium-ion batteries over the selected operating range of currents and battery capacities. In addition, a thermal modeling method has been developed for this model so that it can predict the battery core and crust temperature by including the effect of internal resistance. First, various discharge tests on one cell are carried out, and then, cell's parameters and thermal characteristics are obtained. The single-cell model proposed is shown to be accurate by analyzing the simulation data and test results. Next, real working conditions tests are performed, and simulation calculations on one cell are presented. In the end, the simulation results of a battery pack under HEV driving cycle conditions show that the characteristics of the proposed model allow a good comparison with data from an actual lithium-ion battery pack used in an HEV. © 2015 IEEE

    Lithium-ion battery aging experiments at subzero temperatures and model development for capacity fade estimation

    Get PDF
    Lithium-ion (Li-ion) batteries widely used in electric vehicles (EVs) and hybrid EVs (HEVs) are insufficient for vehicle use after they have degraded to 70% to 80% of their original capacity. Battery lifespan is a large consideration when designing battery packs for EVs/HEVs. Aging mechanisms, such as metal dissolution, growth of the passivated surface film layer on the electrodes, and loss of both recyclable lithium ions, affect the longevity of the Li-ion battery at higherature operations. Even vehicle maneuvers at low temperatures (T<0°C)contribute to battery lifetime degradation, owing to the anode electrode vulnerability to other degradation mechanisms such as lithium plating. Nowadays, only a few battery thermal management schemes have properly considered lowerature degradation. This is due to the lack of studies on aging of Li-ion batteries at sub-zero temperature. This paper investigates how load cycle and calendar life properties affect the lifetime and aging processes of Li-ion cells at low temperatures. Accelerated aging tests were used to determine the effect of the ambient temperature on the performance of three 100-Ah LiFeMnP04 Li-ion cells. Two of them were aged through a normalized driving cycle at two temperature tests (-20°C and 25°C). The calendar test was carried out on one single battery at -20 °C and mid-range of state of charge (50%). Their capacities were continuously measured every two or three days. An aging model is developed and added to a preliminary single-cell electrothermal model to establish, in future works, a thermal strategy capable of predicting how the cell ages. This aging model was then validated by comparing its predictions with the aging data obtained from a cycling test at 0 °C. © 1967-2012 IEEE

    Quantitative analysis of an Yb³⁺-doped YAG optical ceramic at the atomic level by STEM-HAADF

    Full text link
    EMC2012: The 15th European Microscopy Congress, 16th - 21st September 2012, Manchester Central, United Kingdo

    An Analysis of the Shapes of Interstellar Extinction Curves. V. The IR-Through-UV Curve Morphology

    Full text link
    We study the IR-through-UV interstellar extinction curves towards 328 Galactic B and late-O stars. We use a new technique which employs stellar atmosphere models in lieu of unreddened "standard" stars. This technique is capable of virtually eliminating spectral mismatch errors in the curves. It also allows a quantitative assessment of the errors and enables a rigorous testing of the significance of relationships between various curve parameters, regardless of whether their uncertainties are correlated. Analysis of the curves gives the following results: (1) In accord with our previous findings, the central position of the 2175 A extinction bump is mildly variable, its width is highly variable, and the two variations are unrelated. (2) Strong correlations are found among some extinction properties within the UV region, and within the IR region. (3) With the exception of a few curves with extreme (i.e., large) values of R(V), the UV and IR portions of Galactic extinction curves are not correlated with each other. (4) The large sightline-to-sightline variation seen in our sample implies that any average Galactic extinction curve will always reflect the biases of its parent sample. (5) The use of an average curve to deredden a spectral energy distribution (SED) will result in significant errors, and a realistic error budget for the dereddened SED must include the observed variance of Galactic curves. While the observed large sightline-to-sightline variations, and the lack of correlation among the various features of the curves, make it difficult to meaningfully characterize average extinction properties, they demonstrate that extinction curves respond sensitively to local conditions. Thus, each curve contains potentially unique information about the grains along its sightline.Comment: To appear in the Astrophysical Journal, Part 1, July 1, 2007. Figures and Tables which will appear only in the electronic version of the Journal can be obtained via anonymous ftp from ftp://ftp.astronomy.villanova.edu . After logging in, change directories to "fitz/FMV_EXTINCTION". A README file describes the various files present in the director

    A comprehensive review on energy management strategies for electric vehicles considering degradation using aging models

    Get PDF
    Electrification in the transportation industry is becoming more important to face global warming and replace fossil fuels in the future. Among the available energy sources Li-ion battery and proton exchange membrane fuel cell (PEMFC) are the most promising energy sources. Therefore, employing them in fuel cell hybrid electric vehicles (FCHEVs) to combine their advantages is one of the favorable solutions. However, they still face a major challenge residing in their aging that cause the drop of system performance. On one hand, the degradation is the result of the interaction between several aging mechanisms that react differently with various operating conditions. On the other hand, a hybrid system requires an essential energy management strategy (EMS) for fuel economy and optimal power share. At the end, this EMS has an important impact on the lifetime of sources in term of reducing or favorizing the degradation. Therefore, it is important to consider the degradation in the objectives of the designed EMS. Since the degradation is usually neglected when designing an EMS, this paper tends to review the possible methods for designing a health-conscious EMS. Hence, this paper presents a summary of the main fuel cell (FC) and Li-ion battery aging mechanisms as well as the useful degradation models for state of health estimation. In addition, the existing works that consider the degradation of on-board energy sources in their approaches for increasing their durability are classified and analysed. Remaining challenges are detailed along with a discussion and outlooks about current and future trends of health-conscious EMS. Autho

    Passive and active coupling comparison of fuel cell and supercapacitor for a three-wheel electric vehicle

    Get PDF
    The desire to reduce the power electronics related issues has turned the attentions to passive coupling of powertrain components in fuel cell hybrid electric vehicles (FCHEVs). In the passive coupling, the fuel cell (FC) stack is directly connected to an energy storage system on the DC bus as opposed to the active configuration where a DC-DC converter couples the FC stack to the DC bus. This paper compares the use of passive and active couplings in a three-wheel FCHEV to reveal their strengths and weaknesses. In this respect, a passive configuration, using a FC stack and a supercapacitor, is suggested first through formulating a sizing problem. Subsequently, the components are connected in an active configuration where an optimized fuzzy energy management strategy is used to split the power between the components. The performance of the vehicle is compared at each case in terms of capital cost and trip cost, which is composed of FC degradation and hydrogen consumption, and total cost of the system per hour. The obtained results show the superior performance of the passive configuration by 17% in terms of total hourly cost, while the active one only results in less degradation rate in the FC system. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhei

    Effects of price range variation on optimal sizing and energy management performance of a hybrid fuel cell vehicle

    Get PDF
    Abstract: The usage of multi-objective cost functions (MOCFs) in sizing and energy management strategy (EMS) of fuel cell hybrid electric vehicles (FCHEVs) has expanded due to the participation of multiple technological and economic disciplines. To better understand the impact of price fluctuation on the component size and EMS of an FCHEV, this article proposed a sensitivity analysis methodology. First, a two-step optimization approach that considers hydrogen consumption, system degradation, and trip cost is used to minimize a MOCF of the Can-Am Spyder electric motorcycle simulator. Then, an effect analysis is carried out for the cost-optimal results under two driving profiles to understand the link between cost variation and system performance. These simulations indicate that each might result in different system sizes and EMS compromise. After that, an online optimization EMS based on sequential quadratic programming is used on a reduced-scale hardware-in-the-loop configuration to evaluate the simulation results with varied weights. Experimental results indicate that when an adequate size is used for each pair of weights, the EMS results in a 6% decrease in the trip cost

    Mineralization of chitosan membrane using a double diffusion system for bone related applications

    Get PDF
    Chitosan membranes were subjected to a pre-treatment in a double diffusion system, with a calcium solution in one chamber and a phosphate solution in the other chamber. Both chambers were separated by the chitosan membrane and subject to three mineralization periods (5, 10 and 15 minutes). After this pre-treatment the bioactivity of the different calcium phosphate coatings formed was tested for different periods of immersion time, 7, 14 and 21 days at room temperature and 37ºC, in acellular simulated body fluid (1.0x). The results obtained demonstrated that the calcium phosphate coatings formed during the pre-treatment process are bioactive. It was found that the calcification is effective just in the side of the membrane exposed to the calcium solution chamber. This enabled to develop membranes with asymmetric osteoinductive properties that can be useful in different orthopedic applications
    corecore