2,227 research outputs found

    Appropriate Models In Decision Support Systems For River Basin Management

    Get PDF
    In recent years, new ideas and techniques appear very quickly, like sustainability, adaptive management, Geographic Information System, Remote Sensing and participations of new stakeholders, which contribute a lot to the development of decision support systems in river basin management. However, the role of models still needs to be emphasized, especially for model-based decision support systems. This paper aims to find appropriate models for decision support systems. An appropriate system is defined as ‘the system can produce final outputs which enable the decision makers to distinguish different river engineering measures according to the current problem’. An appropriateness framework is proposed mainly based on uncertainty and sensitivity analysis. A flood risk model is used, as a part of the Dutch River Meuse DSS to investigate whether the appropriate framework works. The results showed that the proposed approach is applicable and helpful to find appropriate models

    Identification of an appropriate low flow forecast model\ud for the Meuse River

    Get PDF
    This study investigates the selection of an appropriate low flow forecast model for the Meuse\ud River based on the comparison of output uncertainties of different models. For this purpose, three data\ud driven models have been developed for the Meuse River: a multivariate ARMAX model, a linear regression\ud model and an Artificial Neural Network (ANN) model. The uncertainty in these three models is assumed to\ud be represented by the difference between observed and simulated discharge. The results show that the ANN\ud low flow forecast model with one or two input variables(s) performed slightly better than the other statistical\ud models when forecasting low flows for a lead time of seven days. The approach for the selection of an\ud appropriate low flow forecast model adopted in this study can be used for other lead times and river basins\ud as well

    Identification of appropriate temporal scales of dominant low flow indicators in the Main River, Germany

    Get PDF
    Models incorporating the appropriate temporal scales of dominant indicators for low flows are assumed to perform better than models with arbitrary selected temporal scales. In this paper, we investigate appropriate temporal scales of dominant low flow indicators: precipitation (P), evapotranspiration (ET) and the standardized groundwater storage index (G). This analysis is done in the context of low flow forecasting with a lead time of 14 days in the Main River, a tributary of the Rhine River, located in Germany. Correlation coefficients (i.e. Pearson, Kendall and Spearman) are used to reveal the appropriate temporal scales of dominant low flow indicators at different time lags between low flows and indicators and different support scales of indicators. The results are presented for lag values and support scales, which result in correlation coefficients between low flows and dominant indicators falling into the maximum 10% percentile range. P has a maximum Spearman correlation coefficient (ρ) of 0.38 (p = 0.95) at a support scale of 336 days and a lag of zero days. ET has a maximum ρ of –0.60 (p = 0.95) at a support scale of 280 days and a lag of 56 days and G has a maximum ρ of 0.69 (p = 0.95) at a support scale of 7 days and a lag of 3 days. The identified appropriate support scales and lags can be used for low flow forecasting with a lead time of 14 days

    Deterministic-statistical model coupling in a DSS for river-basin management

    Get PDF
    This paper presents a method for appropriate coupling of deterministic and statistical models. In the decision-support system for the Elbe river, a conceptual rainfall-runoff model is used to obtain the discharge statistics and corresponding average number of flood days, which is a key input variable for a rule-based model for floodplain vegetation. The required quality of the discharge time series cannot be determined by a sensitivity analysis because a deterministic model is linked to a statistical model. To solve the problem, artificial discharge time series are generated that mimic the hypothetical output of rainfall-runoff models of different accuracy. The results indicate that a feasible calibration of the rainfall-runoff model is sufficient to obtain consistency with the vegetation model in view of its sensitivity to changes in the number of flood days in the floodplains

    Appropriate Accuracy of Models for Decision-Support Systems: Case Example for the Elbe River Basin

    Get PDF
    Given the growing complexity of water-resources management there will be an increasing need\ud for integrated tools to support policy analysis, communication, and research. A key aspect of the design is the\ud combination of process models from different scientific disciplines in an integrated system. In general these\ud models differ in sensitivity and accuracy, while non-linear and qualitative models can be present. The current\ud practice is that the preferences of the designers of a decision-support system, and practical considerations\ud such as data availability guide the selection of models and data. Due to a lack of clear scientific guidelines the\ud design becomes an ad-hoc process, depending on the case study at hand, while selected models can be overly\ud complex or too coarse for their purpose. Ideally, the design should allow for the ranking of selected\ud management measures according to the objectives set by end users, without being more complex than\ud necessary. De Kok and Wind [2003] refer to this approach as appropriate modeling. A good case example is\ud the ongoing pilot project aiming at the design of a decision-support system for the Elbe river basin. Four\ud functions are accounted for: navigability, floodplain ecology, flooding safety, and water quality. This paper\ud concerns the response of floodplain biotope types to river engineering works and changes in the flooding\ud frequency of the floodplains. The HBV-D conceptual rainfall-runoff model is used to simulate the impact of\ud climate and land use change on the discharge statistics. The question was raised how well this rainfall-runoff\ud model should be calibrated as compared to the observed discharge data. Sensitivity analyses indicate that a\ud value of R2 = 0.87 should be sufficient

    Localized climate control in greenhouses

    Get PDF
    Strategies for controlling the indoor climate in greenhouses are based on a few sensors and actuators in combination with an assumption that climate variables, such as temperature, are uniform throughout the greenhouse. While this is already an improper assumption for conventional greenhouses, it especially does not hold for the new trend of growing crops at multiple layers. In addition, different temperature values are desired at the different layers, which turns out to give an uncontrollability issue with the current set of actuators. To solve this issue, fans are placed at each of the layers and an MPC strategy is employed for controlling this nonlinear MIMO system. A case study further shows that such a control strategy reduces the consumed energy of the greenhouse, while maintaining the desired temperature values

    Uncertainty analysis of a low flow model for the Rhine River

    Get PDF
    It is widely recognized that hydrological models are subject to parameter uncertainty. However, little attention has been paid so far to the uncertainty in parameters of the data-driven models like weights in neural networks. This study aims at applying a structured uncertainty analysis to a data-driven model for low flow forecasting with a lead time of 14 days in the Rhine River. In the modeling phase, the Rhine basin is divided into seven major sub-basins. Each sub-basin is modeled separately with a data-driven model and the output discharges were routed to Lobith with another data-driven model. Basin averaged precipitation, basin averaged potential evapotranspiration, basin averaged fresh snow depths, basin averaged groundwater levels and major lake levels in the sub-basins are selected as low flow indicators and used as inputs to the models. The basin discretization and the selection of low flow indicators were not arbitrary since the dominant processes were considered by applying seasonality analysis to discharge time series from 108 sub-basins. Moreover, the correlations between indicators and low flows with varying temporal resolution and varying lags were used to identify appropriate temporal scales of the model inputs. The structure of the model can inherit uncertainty too due to many factors, including the lack of a robust hydrological theory at the spatial scale of the seven sub-basins. However, the parameter uncertainty is assumed to be the largest uncertainty source compared to other uncertainty sources. The effects of the input uncertainty were not assessed since averaging over sub-basins significantly reduces the measurement uncertainties. The model parameter sets were estimated using inverse modeling. The uncertainty of each weight is expressed as a probability distribution. Sensitivity analysis was applied for reducing the dimension and size of parameter space before uncertainty analysis. Finally, Monte Carlo Simulation was used to estimate the posterior distributions of the model outputs. The results in this study provide the effects of uncertainties in low flow model parameters on the model outputs. It has also been shown that the explicit assessment of uncertainties in the data-driven model parameters can lead to significant improvements in the information supply for low flow forecasting
    • 

    corecore