1,348 research outputs found
Neutron star masses from hydrodynamical effects in obscured sgHMXBs
A population of obscured supergiant High Mass X-ray Binaries (sgHMXBs) has
been discovered by INTEGRAL. X-ray wind tomography of IGR J17252-3616 inferred
a slow wind velocity to account for the enhanced obscuration. The main goal of
this study is to understand under which conditions high obscuration could
occur. We have used an hydrodynamical code to simulate the flow of the stellar
wind around the neutron star. A grid of simulations was used to study the
dependency of the absorbing column density and of the X-ray light-curves on the
model parameters. A comparison between the simulation results and the
observations of IGR J17252-3616 provides an estimate on these parameters. We
have constrained the wind terminal velocity to 500-600 km/s and the neutron
star mass to 1.75-2.15 solar masses. We have confirmed that the initial
hypothesis of a slow wind velocity with a moderate mass loss rate is valid. The
mass of the neutron star can be constrained by studying its impact on the
accretion flow.Comment: A&A in pres
A reddening-free method to estimate the Ni mass of Type Ia supernovae
The increase in the number of Type Ia supernovae (SNe\,Ia) has demonstrated
that the population shows larger diversity than has been assumed in the past.
The reasons (e.g. parent population, explosion mechanism) for this diversity
remain largely unknown. We have investigated a sample of SNe\,Ia near-infrared
light curves and have correlated the phase of the second maximum with the
bolometric peak luminosity. The peak bolometric luminosity is related to the
time of the second maximum (relative to the {\it B} light curve maximum) as
follows : .
Ni masses can be derived from the peak luminosity based on Arnett's
rule, which states that the luminosity at maximum is equal to instantaneous
energy generated by the nickel decay. We check this assumption against recent
radiative-transfer calculations of Chandrasekhar-mass delayed detonation models
and find this assumption is valid to within 10\% in recent radiative-transfer
calculations of Chandrasekhar-mass delayed detonation models.
The vs. relation is applied to a sample of 40 additional
SNe\,Ia with significant reddening ( 0.1 mag) and a reddening-free
bolometric luminosity function of SNe~Ia is established. The method is tested
with the Ni mass measurement from the direct observation of
rays in the heavily absorbed SN 2014J and found to be fully
consistent.
Super-Chandrasekhar-mass explosions, in particular SN\,2007if, do not follow
the relations between peak luminosity and second IR maximum. This may point to
an additional energy source contributing at maximum light.
The luminosity function of SNe\,Ia is constructed and is shown to be
asymmetric with a tail of low-luminosity objects and a rather sharp
high-luminosity cutoff, although it might be influenced by selection effects.Comment: 9 pages, 3 figures, Accepted to A&
Towards Efficient Verification of Population Protocols
Population protocols are a well established model of computation by
anonymous, identical finite state agents. A protocol is well-specified if from
every initial configuration, all fair executions reach a common consensus. The
central verification question for population protocols is the
well-specification problem: deciding if a given protocol is well-specified.
Esparza et al. have recently shown that this problem is decidable, but with
very high complexity: it is at least as hard as the Petri net reachability
problem, which is EXPSPACE-hard, and for which only algorithms of non-primitive
recursive complexity are currently known.
In this paper we introduce the class WS3 of well-specified strongly-silent
protocols and we prove that it is suitable for automatic verification. More
precisely, we show that WS3 has the same computational power as general
well-specified protocols, and captures standard protocols from the literature.
Moreover, we show that the membership problem for WS3 reduces to solving
boolean combinations of linear constraints over N. This allowed us to develop
the first software able to automatically prove well-specification for all of
the infinitely many possible inputs.Comment: 29 pages, 1 figur
Ionization avalanching in clusters ignited by extreme-ultraviolet driven seed electrons
We study the ionization dynamics of Ar clusters exposed to ultrashort
near-infrared (NIR) laser pulses for intensities well below the threshold at
which tunnel ionization ignites nanoplasma formation. We find that the emission
of highly charged ions up to Ar can be switched on with unit contrast by
generating only a few seed electrons with an ultrashort extreme ultraviolet
(XUV) pulse prior to the NIR field. Molecular dynamics simulations can explain
the experimental observations and predict a generic scenario where efficient
heating via inverse bremsstrahlung and NIR avalanching are followed by resonant
collective nanoplasma heating. The temporally and spatially well-controlled
injection of the XUV seed electrons opens new routes for controlling
avalanching and heating phenomena in nanostructures and solids, with
implications for both fundamental and applied laser-matter science.Comment: 5 pages, 4 figure
Turbulent Magnetic Field Amplification from Spiral SASI Modes: Implications for Core-Collapse Supernovae and Proto-Neutron Star Magnetization
We extend our investigation of magnetic field evolution in three-dimensional
flows driven by the stationary accretion shock instability (SASI) with a suite
of higher-resolution idealized models of the post-bounce core-collapse
supernova environment. Our magnetohydrodynamic simulations vary in initial
magnetic field strength, rotation rate, and grid resolution. Vigorous
SASI-driven turbulence inside the shock amplifies magnetic fields
exponentially; but while the amplified fields reduce the kinetic energy of
small-scale flows, they do not seem to affect the global shock dynamics. The
growth rate and final magnitude of the magnetic energy are very sensitive to
grid resolution, and both are underestimated by the simulations. Nevertheless
our simulations suggest that neutron star magnetic fields exceeding G
can result from dynamics driven by the SASI, \emph{even for non-rotating
progenitors}.Comment: 28 pages, 17 figures, accepted for publication in the Ap
Spherically symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants
Pulsars, formed during supernova explosions, are known to be sources of
relativistic magnetized winds whose interaction with the expanding supernova
remnants (SNRs) gives rise to a pulsar wind nebula (PWN). We present
spherically symmetric relativistic magnetohydrodynamics (RMHD) simulations of
the interaction of a pulsar wind with the surrounding SNR, both in particle and
magnetically dominated regimes. As shown by previous simulations, the evolution
can be divided in three phases: free expansion, a transient phase characterized
by the compression and reverberation of the reverse shock, and a final Sedov
expansion. The evolution of the contact discontinuity between the PWN and the
SNR (and consequently of the SNR itself) is almost independent of the
magnetization of the nebula as long as the total (magnetic plus particle)
energy is the same. However, a different behaviour of the PWN internal
structure is observable during the compression-reverberation phase, depending
on the degree of magnetization=2E The simulations were performed using the
third order conservative scheme by Del Zanna et al. (2003).Comment: 11 pages, Latex, 22 Encapsulated PostScript figures, accepted f or
publication on A&
A physical interpretation of the jet-like X-ray emission from supernova remnant W49B
In the framework of the study of supernova remnants and their complex
interaction with the interstellar medium and the circumstellar material, we
focus on the galactic supernova remnant W49B. Its morphology exhibits an X-ray
bright elongated nebula, terminated on its eastern end by a sharp perpendicular
structure aligned with the radio shell. The X-ray spectrum of W49B is
characterized by strong K emission lines from Si, S, Ar, Ca, and Fe. There is a
variation of the temperature in the remnant with the highest temperature found
in the eastern side and the lowest one in the western side. The analysis of the
recent observations of W49B indicates that the remnant may be the result of an
asymmetric bipolar explosion where the ejecta are collimated along a jet-like
structure and the eastern jet is hotter and more Fe-rich than the western one.
Another possible scenario associates the X-ray emission with a spherical
explosion where parts of the ejecta are interacting with a dense belt of
ambient material. To overcome this ambiguity we present new results of the
analysis of an XMM-Newton observation and we perform estimates of the mass and
energy of the remnant. We conclude that the scenario of an anisotropic jet-like
explosion explains quite naturally our observation results, but the association
of W49B with a hypernova and a gamma-ray burst, although still possible, is not
directly supported by any evidence.Comment: 7 pages, 5 figures, accepted for publication in Advances in Space
Researc
- …