5 research outputs found

    On the Relationship Between the Critical Temperature and the London Penetration Depth in Layered Organic Superconductors

    Full text link
    We present an analysis of previously published measurements of the London penetration depth of layered organic superconductors. The predictions of the BCS theory of superconductivity are shown to disagree with the measured zero temperature, in plane, London penetration depth by up to two orders of magnitude. We find that fluctuations in the phase of the superconducting order parameter do not determine the superconducting critical temperature as the critical temperature predicted for a Kosterlitz--Thouless transition is more than an order of magnitude greater than is found experimentally for some materials. This places constraints on theories of superconductivity in these materials.Comment: 5 pages, 1 figur

    Effect of anisotropic impurity scattering in superconductors

    Full text link
    We discuss the weak-coupling BCS theory of a superconductor with the impurities, accounting for their anisotropic momentum-dependent potential. The impurity scattering process is considered in the t-matrix approximation and its influence on the superconducting critical temperature is studied in the Born and unitary limit for a d- and (d+s)-wave superconductors. We observe a significant dependence of the pair-breaking strength on the symmetry of the scattering potential and classify the impurity potentials according to their ability to alter T_c. A good agreement with the experimental data for Zn doping and oxygen irradiation in the overdoped cuprates is found.Comment: 31 pages, RevTex, 15 PostScript figure
    corecore