1,757 research outputs found
Density functional theory of vortex lattice melting in layered superconductors: a mean-field--substrate approach
We study the melting of the pancake vortex lattice in a layered
superconductor in the limit of vanishing Josephson coupling. Our approach
combines the methodology of a recently proposed mean-field substrate model for
such systems with the classical density functional theory of freezing. We
derive a free-energy functional in terms of a scalar order-parameter profile
and use it to derive a simple formula describing the temperature dependence of
the melting field. Our theoretical predictions are in good agreement with
simulation data. The theoretical framework proposed is thermodynamically
consistent and thus capable of describing the negative magnetization jump
obtained in experiments. Such consistency is demonstrated by showing the
equivalence of our expression for the density discontinuity at the transition
with the corresponding Clausius-Clapeyron relation.Comment: 11 pages, 4 figure
Bell's inequality test with time-delayed two-particle correlations
Adopting the frame of mesoscopic physics, we describe a Bell type experiment
involving time-delayed two-particle correlation measurements. The
indistinguishability of quantum particles results in a specific interference
between different trajectories. We show how the non-locality in the
time-delayed correlations due to the indistinguishability of the quantum
particles manifests itself in the violation of a Bell inequality, where the
degree of violation is related to the accuracy of the measurement. We
demonstrate how the interrelation between the orbital- and the spin exchange
symmetry can by exploited to infer knowledge on spin-entanglement from a
measurement of orbital entanglement.Comment: 8 pages, 4 figure
Characteristics of First-Order Vortex Lattice Melting: Jumps in Entropy and Magnetization
We derive expressions for the jumps in entropy and magnetization
characterizing the first-order melting transition of a flux line lattice. In
our analysis we account for the temperature dependence of the Landau parameters
and make use of the proper shape of the melting line as determined by the
relative importance of electromagnetic and Josephson interactions. The results
agree well with experiments on anisotropic YBaCuO and
layered BiSrCaCuO materials and reaffirm the validity of
the London model.Comment: 4 pages. We have restructured the paper to emphasize that in the
London scaling regime (appropriate for YBCO) our results are essentially
exact. We have also emphasized that a major controversy over the relevance of
the London model to describe VL melting has been settled by this wor
Weak- to strong pinning crossover
Material defects in hard type II superconductors pin the flux lines and thus
establish the dissipation-free current transport in the presence of a finite
magnetic field. Depending on the density and pinning force of the defects and
the vortex density, pinning is either weak-collective or strong. We analyze the
weak- to strong pinning crossover of vortex matter in disordered
superconductors and discuss the peak effect appearing naturally in this
context.Comment: 4 pages, 2 figure
Edge Tunneling of Vortices in Superconducting Thin Films
We investigate the phenomenon of the decay of a supercurrent due to the
zero-temperature quantum tunneling of vortices from the edge in a thin
superconducting film in the absence of an external magnetic field. An explicit
formula is derived for the tunneling rate of vortices, which are subject to the
Magnus force induced by the supercurrent, through the Coulomb-like potential
barrier binding them to the film's edge. Our approach ensues from the
non-relativistic version of a Schwinger-type calculation for the decay of the
2D vacuum previously employed for describing vortex-antivortex pair-nucleation
in the bulk of the sample. In the dissipation-dominated limit, our explicit
edge-tunneling formula yields numerical estimates which are compared with those
obtained for bulk-nucleation to show that both mechanisms are possible for the
decay of a supercurrent.Comment: REVTeX file, 15 pages, 1 Postscript figure; to appear in Phys.Rev.
A Scaling Hypothesis for the Spectral Densities in the O(3) Nonlinear Sigma-Model
A scaling hypothesis for the n-particle spectral densities of the O(3)
nonlinear sigma-model is described. It states that for large particle numbers
the n-particle spectral densities are ``self-similar'' in being basically
rescaled copies of a universal shape function. This can be viewed as a
2-dimensional, but non-perturbative analogue of the KNO scaling in QCD.
Promoted to a working hypothesis, it allows one to compute the two point
functions at ``all'' energy or length scales. In addition, the values of two
non-perturbative constants (needed for a parameter-free matching of the
perturbative and the non-perturbative regime) are determined exactly.Comment: 9 Pages, Latex, 3 Postscript Figure
Flux flow resistivity and vortex viscosity of high-Tc films
The flux flow regime of high-T samples of different normal state
resistivities is studied in the temperature range where the sign of the Hall
effect is reversed. The scaling of the vortex viscosity with normal state
resistivity is consistent with the Bardeen-Stephen theory. Estimates of the
influence of possible mechanisms suggested for the sign reversal of the Hall
effect are also given.Comment: 3 pages. 4 figures upon reques
Thermal Suppression of Strong Pinning
We study vortex pinning in layered type-II superconductors in the presence of
uncorrelated disorder for decoupled layers. Introducing the new concept of
variable-range thermal smoothing, we describe the interplay between strong
pinning and thermal fluctuations. We discuss the appearance and analyze the
evolution in temperature of two distinct non-linear features in the
current-voltage characteristics. We show how the combination of layering and
electromagnetic interactions leads to a sharp jump in the critical current for
the onset of glassy response as a function of temperature.Comment: LaTeX 2.09, 4 pages, 2 figures, submitted to Phys. Rev. Let
- …