2,798 research outputs found
Quantum Size Effects in the Atomistic Structure of Armchair-Nanoribbons
Quantum size effects in armchair graphene nano-ribbons (AGNR) with hydrogen
termination are investigated via density functional theory (DFT) in Kohn-Sham
formulation. "Selection rules" will be formulated, that allow to extract
(approximately) the electronic structure of the AGNR bands starting from the
four graphene dispersion sheets. In analogy with the case of carbon nanotubes,
a threefold periodicity of the excitation gap with the ribbon width (N, number
of carbon atoms per carbon slice) is predicted that is confirmed by ab initio
results. While traditionally such a periodicity would be observed in electronic
response experiments, the DFT analysis presented here shows that it can also be
seen in the ribbon geometry: the length of a ribbon with L slices approaches
the limiting value for a very large width 1 << N (keeping the aspect ratio
small N << L) with 1/N-oscillations that display the electronic selection
rules. The oscillation amplitude is so strong, that the asymptotic behavior is
non-monotonous, i.e., wider ribbons exhibit a stronger elongation than more
narrow ones.Comment: 5 pages, 6 figure
Observation of long range magnetic ordering in pyrohafnate Nd2Hf2O7: A neutron diffraction study
We have investigated the physical properties of a pyrochlore hafnate Nd2Hf2O7
using ac magnetic susceptibility \chi_ac(T), dc magnetic susceptibility
\chi(T), isothermal magnetization M(H) and heat capacity C_p(T) measurements,
and determined the magnetic ground state by neutron powder diffraction study.
An upturn is observed below 6 K in C_p(T)/T, however both C_p(T) and \chi(T) do
not show any clear anomaly down to 2 K. The \chi_ac(T) shows a well pronounced
anomaly indicating an antiferromagnetic transition at T_N = 0.55 K. The long
range antiferromagnetic ordering is confirmed by neutron diffraction. The
refinement of neutron diffraction pattern reveals an all-in/all-out
antiferromagnetic structure, where for successive tetrahedra, the four Nd3+
magnetic moments point alternatively all-into or all-out-of the tetrahedron,
with an ordering wavevector k = (0, 0, 0) and an ordered state magnetic moment
of m = 0.62(1) \mu_B/Nd at 0.1 K. The ordered moment is strongly reduced
reflecting strong quantum fluctuations in ordered state.Comment: 10 pages, 9 figures and 2 tables; to appear in Phys. Rev.
AlkoxyalleneâBased LANCA ThreeâComponent Synthesis of 1,2âDiketones, Quinoxalines, and Unique Isoindenone Dimers and a Computational Study of the Isoindenone Dimerization
A series of ÎČâalkoxyâÎČâketoenamides was prepared by the wellâestablished LANCA threeâcomponent reaction of lithiated 1â(2âtrimethylsilylethoxy)âsubstituted allenes, nitriles, and α,ÎČâunsaturated carboxylic acids. The αâtertâbutylâsubstituted compounds were smoothly converted into the expected 1,2âdiketones by treatment with trifluoroacetic acid. A subsequent condensation of the 1,2âdiketones with oâphenylenediamine provided the desired highly substituted quinoxalines in good overall yield. Surprisingly, the αâphenylâsubstituted ÎČâalkoxyâÎČâketoenamides investigated afford not only the expected 1,2âdiketones, but also pentacyclic compounds with an antiâtricyclo[4.2.1.12,5]decaâ3,7âdieneâ9,10âdione core. These interesting products are very likely the result of an isoindenone dimerization which was mechanistically studied with the support of DFT calculations. Under the strongly acidic reaction conditions, a stepwise reaction is likely leading to a protonated isoindenone as reactive intermediate. It may first form a van der Waals complex with a neutral isoindenone before the two regioâ and diastereoselective ring forming steps occur. Interestingly, two neutral or two protonated isoindenones are also predicted to dimerize giving the observed pentacyclic product
Density of states in graphene with vacancies: midgap power law and frozen multifractality
The density of states (DoS), , of graphene is investigated
numerically and within the self-consistent T-matrix approximation (SCTMA) in
the presence of vacancies within the tight binding model. The focus is on
compensated disorder, where the concentration of vacancies, and
, in both sub-lattices is the same. Formally, this model belongs to
the chiral symmetry class BDI. The prediction of the non-linear sigma-model for
this class is a Gade-type singularity . Our numerical data is compatible with this
result in a preasymptotic regime that gives way, however, at even lower
energies to , . We take this finding as an evidence that similar to the case
of dirty d-wave superconductors, also generic bipartite random hopping models
may exhibit unconventional (strong-coupling) fixed points for certain kinds of
randomly placed scatterers if these are strong enough. Our research suggests
that graphene with (effective) vacancy disorder is a physical representative of
such systems.Comment: References updated onl
Field Induced Magnetic Ordering and Single-ion Anisotropy in the Quasi-1D Haldane Chain Compound SrNi2V2O8: A Single Crystal investigation
Field-induced magnetic ordering in the Haldane chain compound
SrNiVO and effect of anisotropy have been investigated using
single crystals. Static susceptibility, inelastic neutron scattering,
high-field magnetization, and low temperature heat-capacity studies confirm a
non-magnetic spin-singlet ground state and a gap between the singlet ground
state and triplet excited states. The intra-chain exchange interaction is
estimated to be 0.1 meV. Splitting of the dispersions into two
modes with minimum energies 1.57 and 2.58 meV confirms the existence of
single-ion anisotropy . The value of {\it D} is estimated to be
meV and the easy axis is found to be along the
crystallographic {\it c}-axis. Field-induced magnetic ordering has been found
with two critical fields [0.2 T and
0.5 T at 4.2 K]. Field-induced
three-dimensional magnetic ordering above the critical fields is evident from
the heat-capacity, susceptibility, and high-field magnetization study. The
Phase diagram in the {\it H-T} plane has been obtained from the high-field
magnetization. The observed results are discussed in the light of theoretical
predictions as well as earlier experimental reports on Haldane chain compounds
p-i-n heterojunctions with BiFeO3 perovskite nanoparticles and p- and n-type oxides: photovoltaic properties.
We formed p-i-n heterojunctions based on a thin film of BiFeO3 nanoparticles. The perovskite acting as an intrinsic semiconductor was sandwiched between a p-type and an n-type oxide semiconductor as hole- and electron-collecting layer, respectively, making the heterojunction act as an all-inorganic oxide p-i-n device. We have characterized the perovskite and carrier collecting materials, such as NiO and MoO3 nanoparticles as p-type materials and ZnO nanoparticles as the n-type material, with scanning tunneling spectroscopy; from the spectrum of the density of states, we could locate the band edges to infer the nature of the active semiconductor materials. The energy level diagram of p-i-n heterojunctions showed that type-II band alignment formed at the p-i and i-n interfaces, favoring carrier separation at both of them. We have compared the photovoltaic properties of the perovskite in p-i-n heterojunctions and also in p-i and i-n junctions. From current-voltage characteristics and impedance spectroscopy, we have observed that two depletion regions were formed at the p-i and i-n interfaces of a p-i-n heterojunction. The two depletion regions operative at p-i-n heterojunctions have yielded better photovoltaic properties as compared to devices having one depletion region in the p-i or the i-n junction. The results evidenced photovoltaic devices based on all-inorganic oxide, nontoxic, and perovskite materials
Spinon Confinement in the One-Dimensional Ising-Like Antiferromagnet SrCo2V2O8
For quasi-one dimensional quantum spin systems theory predicts the occurrence
of a confinement of spinon excitation due to interchain couplings. Here we
investigate the system SrCo2V2O8, a realization of the weakly-coupled
Ising-like XXZ antiferromagnetic chains, by terahertz spectroscopy with and
without applied magnetic field. At low temperatures a series of excitations is
observed, which split in a Zeeman-like fashion in an applied magnetic field.
These magnetic excitations are identified as the theoretically predicted
spinon-pair excitations. Using a one dimensional Schr\"odinger equation with a
linear confinement potential imposed by weak interchain couplings, the
hierarchy of the confined spinons can be fully described.Comment: 4 pages, 3 figure
Investigation of the magnetic structure and crystal field states of pyrochlore antiferromagnet Nd2Zr2O7
We present synchrotron x-ray diffraction, neutron powder diffraction and
time-of-flight inelastic neutron scattering measurements on the rare earth
pyrochlore oxide Nd2Zr2O7 to study the ordered state magnetic structure and
cystal field states. The structural characterization by high-resolution
synchrotron x-ray diffraction confirms that the pyrochlore structure has no
detectable O vacancies or Nd/Zr site mixing. The neutron diffraction reveals
long range all-in/all-out antiferromagnetic order below T_N ~ 0.4 K with
propagation vector k = (0 0 0) and an ordered moment of 1.26(2) \mu_B/Nd at 0.1
K. The ordered moment is much smaller than the estimated moment of 2.65
\mu_B/Nd for the local Ising ground state of Nd3+ (J=9/2) suggesting that
the ordering is partially suppressed by quantum fluctuations. The strong Ising
anisotropy is further confirmed by the inelastic neutron scattering data which
reveals a well-isolated dipolar-octupolar type Kramers doublet ground state.
The crystal field level scheme and ground state wavefunction have been
determined.Comment: 12 pages, 15 figures, 2 table
- âŠ