205 research outputs found

    Thermal histories of the samples of two KOSI comet nucleus simulation experiments

    Get PDF
    Temperatures recorded during two KOSI comet nucleus simulation experiments strongly suggest that heat transport by vapor flow into the interior of the sample is very important. Two comet nucleus simulation experiments have been done by the KOSI team in a big space simulator. The thermal evolution of the sample during insolation and the results of simplified thermal evolution calculations are discussed. The observed thermal histories cannot be explained by a simple model with heat transferred by heat conduction at a constant conductivity, so a coupled heat and mass transfer problem was considered. The porous ice matrix was assumed to have a constant thermal conductivity and to be in thermal equilibrium with vapor in the pores, the internal pressure being the vapor pressure. The vapor was modelled as an ideal gas because, at the temperatures relevant to the problem, the mean free path length of the vapor molecules is large in comparison with the pore dimensions. The heat capacity at constant volume per unit mass of the two phase mixture was also assumed constant. The vapor was allowed to flow and transfer heat in response to an internal pressure gradient

    Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    Get PDF
    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind

    Long-lived explosive volcanism on Mercury

    Get PDF
    The duration and timing of volcanic activity on Mercury are key indicators of the thermal evolution of the planet and provide a valuable comparative example for other terrestrial bodies. The majority of effusive volcanism on Mercury appears to have occurred early in the planet's geological history (~4.1–3.55 Ga), but there is also evidence for explosive volcanism. Here we present evidence that explosive volcanism occurred from at least 3.9 Ga until less than a billion years ago and so was substantially more long-lived than large-scale lava plains formation. This indicates that thermal conditions within Mercury have allowed partial melting of silicates through the majority of its geological history and that the overall duration of volcanism on Mercury is similar to that of the Moon despite the different physical structure, geological history, and composition of the two bodies

    BepiColombo-Mission Overview and Science Goals

    Get PDF
    BepiColombo is a joint mission between the European Space Agency, ESA, and the Japanese Aerospace Exploration Agency, JAXA, to perform a comprehensive exploration of Mercury. Launched on 20th October 2018 from the European spaceport in Kourou, French Guiana, the spacecraft is now en route to Mercury. Two orbiters have been sent to Mercury and will be put into dedicated, polar orbits around the planet to study the planet and its environment. One orbiter, Mio, is provided by JAXA, and one orbiter, MPO, is provided by ESA. The scientific payload of both spacecraft will provide detailed information necessary to understand the origin and evolution of the planet itself and its surrounding environment. Mercury is the planet closest to the Sun, the only terrestrial planet besides Earth with a self-sustained magnetic field, and the smallest planet in our Solar System. It is a key planet for understanding the evolutionary history of our Solar System and therefore also for the question of how the Earth and our Planetary System were formed. The scientific objectives focus on a global characterization ofMercury through the investigation of its interior, surface, exosphere, and magnetosphere. In addition, instrumentation onboard BepiColombo will be used to test Einstein's theory of general relativity. Major effort was put into optimizing the scientific return of the mission by defining a payload such that individual measurements can be interrelated and complement each other.Peer reviewe

    BepiColombo’s Cruise Phase: Unique Opportunity for Synergistic Observations

    Get PDF
    The investigation of multi-spacecraft coordinated observations during the cruise phase of BepiColombo (ESA/JAXA) are reported, with a particular emphasis on the recently launched missions, Solar Orbiter (ESA/NASA) and Parker Solar Probe (NASA). Despite some payload constraints, many instruments onboard BepiColombo are operating during its cruise phase simultaneously covering a wide range of heliocentric distances (0.28 AU–0.5 AU). Hence, the various spacecraft configurations and the combined in-situ and remote sensing measurements from the different spacecraft, offer unique opportunities for BepiColombo to be part of these unprecedented multipoint synergistic observations and for potential scientific studies in the inner heliosphere, even before its orbit insertion around Mercury in December 2025. The main goal of this report is to present the coordinated observation opportunities during the cruise phase of BepiColombo (excluding the planetary flybys). We summarize the identified science topics, the operational instruments, the method we have used to identify the windows of opportunity and discuss the planning of joint observations in the future

    BepiColombo's Cruise Phase : Unique Opportunity for Synergistic Observations

    Get PDF
    The investigation of multi-spacecraft coordinated observations during the cruise phase of BepiColombo (ESA/JAXA) are reported, with a particular emphasis on the recently launched missions, Solar Orbiter (ESA/NASA) and Parker Solar Probe (NASA). Despite some payload constraints, many instruments onboard BepiColombo are operating during its cruise phase simultaneously covering a wide range of heliocentric distances (0.28 AU-0.5 AU). Hence, the various spacecraft configurations and the combined in-situ and remote sensing measurements from the different spacecraft, offer unique opportunities for BepiColombo to be part of these unprecedented multipoint synergistic observations and for potential scientific studies in the inner heliosphere, even before its orbit insertion around Mercury in December 2025. The main goal of this report is to present the coordinated observation opportunities during the cruise phase of BepiColombo (excluding the planetary flybys). We summarize the identified science topics, the operational instruments, the method we have used to identify the windows of opportunity and discuss the planning of joint observations in the future.Peer reviewe

    Investigating Mercury's Environment with the Two-Spacecraft BepiColombo Mission

    Get PDF
    The ESA-JAXA BepiColombo mission will provide simultaneous measurements from two spacecraft, offering an unprecedented opportunity to investigate magnetospheric and exospheric dynamics at Mercury as well as their interactions with the solar wind, radiation, and interplanetary dust. Many scientific instruments onboard the two spacecraft will be completely, or partially devoted to study the near-space environment of Mercury as well as the complex processes that govern it. Many issues remain unsolved even after the MESSENGER mission that ended in 2015. The specific orbits of the two spacecraft, MPO and Mio, and the comprehensive scientific payload allow a wider range of scientific questions to be addressed than those that could be achieved by the individual instruments acting alone, or by previous missions. These joint observations are of key importance because many phenomena in Mercury's environment are highly temporally and spatially variable. Examples of possible coordinated observations are described in this article, analysing the required geometrical conditions, pointing, resolutions and operation timing of different BepiColombo instruments sensors.Peer reviewe

    Triple F - a comet nucleus sample return mission

    Get PDF
    The Triple F (Fresh From the Fridge) mission, a Comet Nucleus Sample Return, has been proposed to ESA's Cosmic Vision program. A sample return from a comet enables us to reach the ultimate goal of cometary research. Since comets are the least processed bodies in the solar system, the proposal goes far beyond cometary science topics (like the explanation of cometary activity) and delivers invaluable information about the formation of the solar system and the interstellar molecular cloud from which it formed. The proposed mission would extract three sample cores of the upper 50cm from three locations on a cometary nucleus and return them cooled to Earth for analysis in the laboratory. The simple mission concept with a touch-and-go sampling by a single spacecraft was proposed as an M-class mission in collaboration with the Russian space agency ROSCOSMOS. © The Author(s) 2008
    • 

    corecore