94 research outputs found
Some results on blow up for semilinear parabolic problems
The authors describe the asymptotic behavior of blow-up for the semilinear heat equation ut=uxx+f(u) in R×(0,T), with initial data u0(x)>0 in R, where f(u)=up, p>1, or f(u)=eu. A complete description of the types of blow-up patterns and of the corresponding blow-up final-time profiles is given. In the rescaled variables, both are governed by the structure of the Hermite polynomials H2m(y). The H2-behavior is shown to be stable and generic. The existence of H4-behavior is proved. A nontrivial blow-up pattern with a blow-up set of nonzero measure is constructed. Similar results for the absorption equation ut=uxx−up, 0<p<1, are discussed
Five types of blow-up in a semilinear fourth-order reaction-diffusion equation: an analytic-numerical approach
Five types of blow-up patterns that can occur for the 4th-order semilinear
parabolic equation of reaction-diffusion type
u_t= -\Delta^2 u + |u|^{p-1} u \quad {in} \quad \ren \times (0,T), p>1,
\quad \lim_{t \to T^-}\sup_{x \in \ren} |u(x,t)|= +\iy, are discussed. For
the semilinear heat equation , various blow-up patterns
were under scrutiny since 1980s, while the case of higher-order diffusion was
studied much less, regardless a wide range of its application.Comment: 41 pages, 27 figure
- …