2,096 research outputs found

    Heterogeneities in amorphous systems under shear

    Get PDF
    The last decade has seen major progresses in studies of elementary mechanisms of deformation in amorphous materials. Here, we start with a review of physically-based theories of plasticity, going back to the identification of "shear-transformations" as early as the 70's. We show how constructive criticism of the theoretical models permits to formulate questions concerning the role of structural disorder, mechanical noise, and long-ranged elastic interactions. These questions provide the necessary context to understand what has motivated recent numerical studies. We then summarize their results, show why they had to focus on athermal systems, and point out the outstanding questions.Comment: Chapter of "Dynamical Heterogeneities in glasses, colloids and granular materials", Eds.: L. Berthier, G. Biroli, J-P Bouchaud, L. Cipelletti and W. van Saarloos (Oxford University Press, to appear), more info at http://w3.lcvn.univ-montp2.fr/~lucacip/DH_book.ht

    Local dynamics and primitive path analysis for a model polymer melt near a surface

    Full text link
    By applying local primitive path and Rouse modes analysis we study the chains conformations, local dynamics and viscosity of a model polymer melt in a polymer-wall interface. We establish that the presence of a repulsive wall leads to acceleration of the dynamics both for unentangled and weakly entangled melts and to a depletion in the entanglement density in the wall vicinity. When the surface bears some grafted chains, we show that the melt chains are accelerated in the unentangled regime and slowed down in the entangled regime. By analyzing the primitive paths we attribute the observed slowdown to an increase in the entanglement density in the interfacial layer. The presence of a relatively small density of grafting sites thus leads to improved mechanical properties (reinforcement) and decreases locally the entanglement length even if the surface is repulsive

    On the definition of temperature in dense granular media

    Full text link
    In this Letter we report the measurement of a pseudo-temperature for compacting granular media on the basis of the Fluctuation-Dissipation relations in the aging dynamics of a model system. From the violation of the Fluctuation-Dissipation Theorem an effective temperature emerges (a dynamical temperature T_{dyn}) whose ratio with the equilibrium temperature T_d^{eq} depends on the particle density. We compare the results for the Fluctuation-Dissipation Ratio (FDR) T_{dyn}/T_d^{eq} at several densities with the outcomes of Edwards' approach at the corresponding densities. It turns out that the FDR and the so-called Edwards' ratio coincide at several densities (very different ages of the system), opening in this way the door to experimental checks as well as theoretical constructions.Comment: RevTex4 4 pages, 4 eps figure

    Modeling transient absorption and thermal conductivity in a simple nanofluid

    Full text link
    Molecular dynamics simulations are used to simulate the thermal properties of a model fluid containing nanoparticles (nanofluid). By modelling transient absorption experiments, we show that they provide a reliable determination of interfacial resistance between the particle and the fluid. The flexibility of molecular simulation allows us to consider separately the effect of confinement, particle mass and Brownian motion on the thermal transfer between fluid and particle. Finally, we show that in the absence of collective effects, the heat conductivity of the nanofluid is well described by the classical Maxwell Garnet equation model

    Nucleation in hydrophobic cylindrical pores : a lattice model

    Full text link
    We consider the nucleation process associated with capillary condensation of a vapor in a hydrophobic cylindrical pore (capillary evaporation). The liquid-vapor transition is described within the framework of a simple lattice model. The phase properties are characterized both at the mean-field level and using Monte-Carlo simulations. The nucleation process for the liquid to vapor transition is then specifically considered. Using umbrella sampling techniques, we show that nucleation occurs through the condensation of an asymmetric vapor bubble at the pore surface. Even for highly confined systems, good agreement is found with macroscopic considerations based on classical nucleation theory. The results are discussed in the context of recent experimental work on the extrusion of water in hydrophobic pores

    Continuum limit of amorphous elastic bodies (III): Three dimensional systems

    Full text link
    Extending recent numerical studies on two dimensional amorphous bodies, we characterize the approach of elastic continuum limit in three dimensional (weakly polydisperse) Lennard-Jones systems. While performing a systematic finite-size analysis (for two different quench protocols) we investigate the non-affine displacement field under external strain, the linear response to an external delta force and the low-frequency harmonic eigenmodes and their density distribution. Qualitatively similar behavior is found as in two dimensions. We demonstrate that the classical elasticity description breaks down below an intermediate length scale ξ\xi, which in our system is approximately 23 molecular sizes. This length characterizes the correlations of the non-affine displacement field, the self-averaging of external noise with distance from the source and gives the lower wave length bound for the applicability of the classical eigenfrequency calculations. We trace back the "Boson-peak" of the density of eigenfrequencies (obtained from the velocity auto-correlation function) to the inhomogeneities on wave lengths smaller than ξ\xi.Comment: 27 pages, 11 figures, submitted to Phys. Rev.

    Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid

    Full text link
    The nonequilibrium dynamics of a binary Lennard-Jones mixture in a simple shear flow is investigated by means of molecular dynamics simulations. The range of temperature investigated covers both the liquid, supercooled and glassy states, while the shear rate covers both the linear and nonlinear regimes of rheology. The results can be interpreted in the context of a nonequilibrium, schematic mode-coupling theory developed recently, which makes the theory applicable to a wide range of soft glassy materials. The behavior of the viscosity is first investigated. In the nonlinear regime, strong shear-thinning is obtained. Scaling properties of the intermediate scattering functions are studied. Standard `mode-coupling properties' of factorization and time-superposition hold in this nonequilibrium situation. The fluctuation-dissipation relation is violated in the shear flow in a way very similar to that predicted theoretically, allowing for the definition of an effective temperature Teff for the slow modes of the fluid. Temperature and shear rate dependencies of Teff are studied using density fluctuations as an observable. The observable dependence of Teff is also investigated. Many different observables are found to lead to the same value of Teff, suggesting several experimental procedures to access Teff. It is proposed that tracer particle of large mass may play the role of an `effective thermometer'. When the Einstein frequency of the tracers becomes smaller than the inverse relaxation time of the fluid, a nonequilibrium equipartition theorem holds. This last result gives strong support to the thermodynamic interpretation of Teff and makes it experimentally accessible in a very direct way.Comment: Version accepted for publication in Journal of Chemical Physic

    Basins of attraction of metastable states of the spherical pp-spin model

    Full text link
    We study the basins of attraction of metastable states in the spherical pp-spin spin glass model, starting the relaxation dynamics at a given distance from a thermalized condition. Weighting the initial condition with the Boltzmann distribution we find a finite size for the basins. On the contrary, a white weighting of the initial condition implies vanishing basins of attraction. We make the corresponding of our results with the ones of a recently constructed effective potential.Comment: LaTeX, 7 pages, 7 eps figure
    • …
    corecore