553 research outputs found
Patient–physician communication concerning participation in cancer chemotherapy trials
Cancer patients demand a high level of involvement in decisions concerning treatment. Many patients are informed about experimental trials, and especially the first consultation may be crucial for the future communication and treatment process. Patients with nonresectable non-small-cell lung cancer or colorectal cancer informed about experimental chemotherapy completed a questionnaire on satisfaction with the communication process, general attitude towards experimental treatments, the substance of information, and personal contact with the physician following their first consultation in a medical oncology unit. Physicians completed a questionnaire on their perception of the patients’ satisfaction. Among 68 physician–cancer patient pairs, 29 patients were informed on chemotherapy in randomised trials and 39 in nonrandomised studies. The general attitude towards experimental treatment was positive or very positive in 71% of patients. Information on the treatment was perceived as completely adequate in 93% of patients informed on randomised and in 67% informed on nonrandomised trials. Physicians underestimated the patients’ satisfaction with the overall communication process, the personal contact, the patients’ perceived sufficiency of the specific treatment information and their ability to decide on study entry. In conclusion, considerable differences were observed between patients informed about experimental chemotherapy in randomised and nonrandomised trials, both with respect to their perception of how adequate the information on the specific treatments were, and whether it was sufficient for decisions on study entry. This study type effect should be accounted for in future evaluations of communication and patient satisfaction. The data also support the fact that cancer patients have a desire for and ability to understand rather detailed and comprehensive treatment information
Associations between fruit and vegetable intake and quality of life
Abstract Dysregulation of the immune response to microbiota is associated with inflammatory bowel disease (IBD), which can trigger intestinal fibrosis. MyD88 is a key component of microbiota signalling but its influence on intestinal fibrosis has not been clarified. Small bowel resections from donor-mice were transplanted subcutaneously into the neck of recipients C57BL/6 B6-MyD88tm1 Aki (MyD88−/−) and C57BL/6-Tg(UBC-green fluorescence protein (GFP))30Scha/J (GFP-Tg). Grafts were explanted up to 21 days after transplantation. Collagen layer thickness was determined using Sirius Red stained slides. In the mouse model of fibrosis collagen deposition and transforming growth factor-beta 1 (TGF-β1) expression was equal in MyD88+/+ and MyD88−/−, indicating that MyD88 was not essential for fibrogenesis. Matrix metalloproteinase (Mmp)9 expression was significantly decreased in grafts transplanted into MyD88−/− recipients compared to MyD88+/+ recipients (0.2 ± 0.1 vs. 153.0 ± 23.1, respectively, p < 0.05), similarly recruitment of neutrophils was significantly reduced (16.3 ± 4.5 vs. 25.4 ± 3.1, respectively, p < 0.05). Development of intestinal fibrosis appears to be independent of MyD88 signalling indicating a minor role of bacterial wall compounds in the process which is in contrast to published concepts and theories. Development of fibrosis appears to be uncoupled from acute inflammation
Use of near infrared reflectance spectroscopy to predict nitrogen uptake by winter wheat within fields with high variability in organic matter
In this study, the ability to predict N-uptake in winter wheat crops using NIR-spectroscopy on soil samples was evaluated. Soil samples were taken in unfertilized plots in one winter wheat field during three years (1997-1999) and in another winter wheat field nearby in one year (2000). Soil samples were analyzed for organic C content and their NIR-spectra. N-uptake was measured as total N-content in aboveground plant materials at harvest. Models calibrated to predict N-uptake were internally cross validated and validated across years and across fields. Cross-validated calibrations predicted N-uptake with an average error of 12.1 to 15.4 kg N ha-1. The standard deviation divided by this error (RPD) ranged between 1.9 and 2.5. In comparison, the corresponding calibrations based on organic C alone had an error from 11.7 to 28.2 kg N ha-1 and RPDs from 1.3 to 2.5. In three of four annual calibrations within a field, the NIR-based calibrations worked better than the organic C based calibrations. The prediction of N-uptake across years, but within a field, worked slightly better with an organic C based calibration than with a NIR based one, RPD = 1.9 and 1.7 respectively. Across fields, the corresponding difference was large in favour of the NIR-calibration, RPD = 2.5 for the NIR-calibration and 1.5 for the organic C calibration. It was concluded that NIR-spectroscopy integrates information about organic C with other relevant soil components and therefore has a good potential to predict complex functions of soils such as N-mineralization. A relatively good agreement of spectral relationships to parameters related to the N-mineralization of datasets across the world suggests that more general models can be calibrated
Decay-assisted collinear resonance ionization spectroscopy: Application to neutron-deficient francium
This paper reports on the hyperfine-structure and radioactive-decay studies
of the neutron-deficient francium isotopes Fr performed with the
Collinear Resonance Ionization Spectroscopy (CRIS) experiment at the ISOLDE
facility, CERN. The high resolution innate to collinear laser spectroscopy is
combined with the high efficiency of ion detection to provide a
highly-sensitive technique to probe the hyperfine structure of exotic isotopes.
The technique of decay-assisted laser spectroscopy is presented, whereby the
isomeric ion beam is deflected to a decay spectroscopy station for alpha-decay
tagging of the hyperfine components. Here, we present the first
hyperfine-structure measurements of the neutron-deficient francium isotopes
Fr, in addition to the identification of the low-lying states of
Fr performed at the CRIS experiment.Comment: Accepted for publication with Physical Review
Intrinsic activity in the fly brain gates visual information during behavioral choices
The small insect brain is often described as an input/output system that executes reflex-like behaviors. It can also initiate neural activity and behaviors intrinsically, seen as spontaneous behaviors, different arousal states and sleep. However, less is known about how intrinsic activity in neural circuits affects sensory information processing in the insect brain and variability in behavior. Here, by simultaneously monitoring Drosophila's behavioral choices and brain activity in a flight simulator system, we identify intrinsic activity that is associated with the act of selecting between visual stimuli. We recorded neural output (multiunit action potentials and local field potentials) in the left and right optic lobes of a tethered flying Drosophila, while its attempts to follow visual motion (yaw torque) were measured by a torque meter. We show that when facing competing motion stimuli on its left and right, Drosophila typically generate large torque responses that flip from side to side. The delayed onset (0.1-1 s) and spontaneous switch-like dynamics of these responses, and the fact that the flies sometimes oppose the stimuli by flying straight, make this behavior different from the classic steering reflexes. Drosophila, thus, seem to choose one stimulus at a time and attempt to rotate toward its direction. With this behavior, the neural output of the optic lobes alternates; being augmented on the side chosen for body rotation and suppressed on the opposite side, even though the visual input to the fly eyes stays the same. Thus, the flow of information from the fly eyes is gated intrinsically. Such modulation can be noise-induced or intentional; with one possibility being that the fly brain highlights chosen information while ignoring the irrelevant, similar to what we know to occur in higher animals
Laser spectroscopy of francium isotopes at the borders of the region of reflection asymmetry
The magnetic dipole moments and changes in mean-square charge radii of the
neutron-rich isotopes were measured with the
newly-installed Collinear Resonance Ionization Spectroscopy (CRIS) beam line at
ISOLDE, CERN, probing the to atomic
transition. The values for
and follow the observed increasing
slope of the charge radii beyond . The charge radii odd-even
staggering in this neutron-rich region is discussed, showing that
has a weakly inverted odd-even staggering while
has normal staggering. This suggests that both isotopes
reside at the borders of a region of inverted staggering, which has been
associated with reflection-asymmetric shapes. The value supports a shell model configuration for the
ground state. The values support the tentative
spin, and point to a intruder ground state configuration.Comment: Accepted for publication with Physical Review
Multiband model of high Tc superconductors
We propose an extension to other high T_{c } compounds of a model introduced
earlier for YBCO. In the ''self-doped'' compounds we assume that the doping
part (namely the BiO, HgO, TlO planes in BSCCO, HBCCO, TBCCO respectively) is
metallic, which leads to a multiband model. This assumption is supported by
band structure calculations. Taking a repulsive pairing interaction between
these doping bands and the CuO_{2} bands leads to opposite signs for the order
parameter on these bands and to nodes whenever the Fermi surfaces of these
bands cross. We show that in BSCCO the low temperature dependence of the
penetration depth is reasonably accounted for. In this case the nodes are not
located near the 45^{o} direction, which makes the experimental determination
of the node locations an important test for our model. The situation in HBCCO
and TBCCO is rather analogous to BSCCO. We consider the indications given by
NMR and find that they rather favor a metallic character for the doping bands.
Finally we discuss the cases of NCCO and LSCO which are not ''self-doped'' and
where our model does not give nodes.Comment: 11 pages, revtex, 1 figure
High-resolution distribution modeling of a threatened short-range endemic plant informed by edaphic factors
Short-range endemic plants often have edaphic specializations that, with their restricted distributions, expose them to increased risk of anthropogenic extinction. Here, we present a modeling approach to understand habitat suitability for Ricinocarpos brevis R.J.F.Hend. & Mollemans (Euphorbiaceae), a threatened shrub confined to three isolated populations in the semi-arid south-west of Western Australia. The model is a maximum entropy species distribution projection constructed on the basis of physical soil characteristics and geomorphology data at approximately 25 m2 (1 arc-second) resolution. The model predicts the species to occur on shallow, low bulk density soils that are located high in the landscape. The model shows high affinity (72.1% average likelihood of occurrence) for the known populations of R. brevis, as well as identifying likely locations that are not currently known to support the species. There was a strong relationship between the likelihood of R. brevis occurrence and soil moisture content that the model estimated at a depth of 20 cm. We advocate that our approach should be standardized using publicly available data to generate testable hypotheses for the distribution and conservation management of short-range endemic plant species for all of continental Australia
Helical core tokamak MHD equilibrium states
Bifurcated magnetohydrodynamic tokamak equilibrium states with axisymmetric or helical core structure are computed. When a peaked pressure profile is chosen, the helical core structures appear like the {em snakes} that are observed in the JET tokamak. They also have the allure of saturated ideal internal kinks. The existence of a magnetic island is not a requisite condition. Novel equilibrium states that can model the snake are obtained for a JET configuration when the -profile has weak reversed magnetic shear with minimum values in the range of to . At the lower end of this range, the equilibrium {em snake} structure lies radially well inside the domain for which . Free boundary equilibria computed for the TCV tokamak develop helical cores when exceeds and have a significant axis excursion for . At fixed , the distortion of the magnetic axis is large in the range . The plasma-vacuum interface is not significantly altered by the internal helical deformations
- …