67,916 research outputs found

    On the rotation of ONC stars in the Tsallis formalism context

    Full text link
    The theoretical distribution function of the projected rotational velocity is derived in the context of the Tsallis formalism. The distribution is used to estimate the average for a stellar sample from the Orion Nebula Cloud (ONC), producing an excellent result when compared with observational data. In addition, the value of the parameter q obtained from the distribution of observed rotations reinforces the idea that there is a relation between this parameter and the age of the cluster.Comment: 6 pages, 2 figure

    Physical constraints on interacting dark energy models

    Full text link
    Physical limits on the equation-of-state (EoS) parameter of a dark energy component non-minimally coupled with the dark matter field are examined in light of the second law of thermodynamics and the positiveness of entropy. Such constraints are combined with observational data sets of type Ia supernovae, baryon acoustic oscillations and the angular acoustic scale of the cosmic microwave background to impose restrictions on the behaviour of the dark matter/dark energy interaction. Considering two EoS parameterisations of the type w=w0+waζ(z)w = w_0 + w_a\zeta(z), we derive a general expression for the evolution of the dark energy density and show that the combination of thermodynamic limits and observational data provide tight bounds on the w0waw_0 - w_a parameter space.Comment: 7 pages, 4 figures. Accepted for publication in European Physical Journal

    Logarithmic behavior of degradation dynamics in metal--oxide semiconductor devices

    Full text link
    In this paper the authors describe a theoretical simple statistical modelling of relaxation process in metal-oxide semiconductor devices that governs its degradation. Basically, starting from an initial state where a given number of traps are occupied, the dynamics of the relaxation process is measured calculating the density of occupied traps and its fluctuations (second moment) as function of time. Our theoretical results show a universal logarithmic law for the density of occupied traps ˉϕ(T,EF)(A+Blnt)\bar{} \sim \phi (T,E_{F}) (A+B \ln t), i.e., the degradation is logarithmic and its amplitude depends on the temperature and Fermi Level of device. Our approach reduces the work to the averages determined by simple binomial sums that are corroborated by our Monte Carlo simulations and by experimental results from literature, which bear in mind enlightening elucidations about the physics of degradation of semiconductor devices of our modern life

    Strong evidences for a nonextensive behavior of the rotation period in Open Clusters

    Full text link
    Time-dependent nonextensivity in a stellar astrophysical scenario combines nonextensive entropic indices qKq_{K} derived from the modified Kawaler's parametrization, and qq, obtained from rotational velocity distribution. These qq's are related through a heuristic single relation given by qq0(1Δt/qK)q\approx q_{0}(1-\Delta t/q_{K}), where tt is the cluster age. In a nonextensive scenario, these indices are quantities that measure the degree of nonextensivity present in the system. Recent studies reveal that the index qq is correlated to the formation rate of high-energy tails present in the distribution of rotation velocity. On the other hand, the index qKq_{K} is determined by the stellar rotation-age relationship. This depends on the magnetic field configuration through the expression qK=1+4aN/3q_{K}=1+4aN/3, where aa and NN denote the saturation level of the star magnetic field and its topology, respectively. In the present study, we show that the connection qqKq-q_{K} is also consistent with 548 rotation period data for single main-sequence stars in 11 Open Clusters aged less than 1 Gyr. The value of qKq_{K}\sim 2.5 from our unsaturated model shows that the mean magnetic field topology of these stars is slightly more complex than a purely radial field. Our results also suggest that stellar rotational braking behavior affects the degree of anti-correlation between qq and cluster age tt. Finally, we suggest that stellar magnetic braking can be scaled by the entropic index qq.Comment: 6 pages and 2 figures, accepted to EPL on October 17, 201
    corecore