12,415 research outputs found

    Inconsistencies in the MIT bag model of hadrons

    Get PDF
    It is shown that what is commonly referred to as the MIT `bag' model of hadrons is thermodynamically wrong: The adiabatic conditions between pressure and temperature, and between pressure and volume imply the third, an adiabatic relation between temperature and volume. Consequently, the bag model is destitute of any predictive power since it reduces to a single adiabatic state. The virial theorems proposed by the MIT group are shown to be the result of the normal power density of states of a non-degenerate gas and not the exponential density of states of the Hagedorn mass spectrum. A number of other elementary misconceptions and inaccuracies are also pointed out.Comment: 9 page

    Origins of turbulent mixing behind detonation propagation into reactive-inert gas interfaces

    Get PDF
    International audienc

    Generalized Jarzynski Equality under Nonequilibrium Feedback Control

    Full text link
    The Jarzynski equality is generalized to situations in which nonequilibrium systems are subject to a feedback control. The new terms that arise as a consequence of the feedback describe the mutual information content obtained by measurement and the efficacy of the feedback control. Our results lead to a generalized fluctuation-dissipation theorem that reflects the readout information, and can be experimentally tested using small thermodynamic systems. We illustrate our general results by an introducing "information ratchet," which can transport a Brownian particle in one direction and extract a positive work from the particle

    Effective Medium Theory of Filamentous Triangular Lattice

    Get PDF
    We present an effective medium theory that includes bending as well as stretching forces, and we use it to calculate mechanical response of a diluted filamentous triangular lattice. In this lattice, bonds are central-force springs, and there are bending forces between neighboring bonds on the same filament. We investigate the diluted lattice in which each bond is present with a probability pp. We find a rigidity threshold pbp_b which has the same value for all positive bending rigidity and a crossover characterizing bending-, stretching-, and bend-stretch coupled elastic regimes controlled by the central-force rigidity percolation point at pCF2/3p_{\textrm{CF}} \simeq 2/3 of the lattice when fiber bending rigidity vanishes.Comment: 15 pages, 9 figure

    Exactly solvable models of adaptive networks

    Full text link
    A satisfiability (SAT-UNSAT) transition takes place for many optimization problems when the number of constraints, graphically represented by links between variables nodes, is brought above some threshold. If the network of constraints is allowed to adapt by redistributing its links, the SAT-UNSAT transition may be delayed and preceded by an intermediate phase where the structure self-organizes to satisfy the constraints. We present an analytic approach, based on the recently introduced cavity method for large deviations, which exactly describes the two phase transitions delimiting this adaptive intermediate phase. We give explicit results for random bond models subject to the connectivity or rigidity percolation transitions, and compare them with numerical simulations.Comment: 4 pages, 4 figure

    `c' is the speed of light, isn't it?

    Full text link
    Theories proposing a varying speed of light have recently been widely promoted under the claim that they offer an alternative way of solving the standard cosmological problems. Recent observational hints that the fine structure constant may have varied during over cosmological scales also has given impetus to these models. In theoretical physics the speed of light, cc, is hidden in almost all equations but with different facets that we try to distinguish. Together with a reminder on scalar-tensor theories of gravity, this sheds some light on these proposed varying speed of light theories.Comment: 14 pages, Late

    Energy Requirement of Control: Comments on Szilard's Engine and Maxwell's Demon

    Get PDF
    In mathematical physical analyses of Szilard's engine and Maxwell's demon, a general assumption (explicit or implicit) is that one can neglect the energy needed for relocating the piston in Szilard's engine and for driving the trap door in Maxwell's demon. If this basic assumption is wrong, then the conclusions of a vast literature on the implications of the Second Law of Thermodynamics and of Landauer's erasure theorem are incorrect too. Our analyses of the fundamental information physical aspects of various type of control within Szilard's engine and Maxwell's demon indicate that the entropy production due to the necessary generation of information yield much greater energy dissipation than the energy Szilard's engine is able to produce even if all sources of dissipation in the rest of these demons (due to measurement, decision, memory, etc) are neglected.Comment: New, simpler and more fundamental approach utilizing the physical meaning of control-information and the related entropy production. Criticism of recent experiments adde
    corecore