14,137 research outputs found

    The Functional Significance of Black-Pigmented Leaves: Photosynthesis, Photoprotection and Productivity in Ophiopogon planiscapus ‘Nigrescens’

    Get PDF
    Black pigmented leaves are common among horticultural cultivars, yet are extremely rare across natural plant populations. We hypothesised that black pigmentation would disadvantage a plant by reducing photosynthesis and therefore shoot productivity, but that this trait might also confer protective benefits by shielding chloroplasts against photo-oxidative stress. CO2 assimilation, chlorophyll a fluorescence, shoot biomass, and pigment concentrations were compared for near isogenic green- and black-leafed Ophiopogon planiscapus ‘Nigrescens’. The black leaves had lower maximum CO2 assimilation rates, higher light saturation points and higher quantum efficiencies of photosystem II (PSII) than green leaves. Under saturating light, PSII photochemistry was inactivated less and recovered more completely in the black leaves. In full sunlight, green plants branched more abundantly and accumulated shoot biomass quicker than the black plants; in the shade, productivities of the two morphs were comparable. The data indicate a light-screening, photoprotective role of foliar anthocyanins. However, limitations to photosynthetic carbon assimilation are relatively small, insufficient to explain the natural scarcity of black-leafed plants

    Near mean-field behavior in the generalized Burridge-Knopoff earthquake model with variable range stress transfer

    Full text link
    Simple models of earthquake faults are important for understanding the mechanisms for their observed behavior in nature, such as Gutenberg-Richter scaling. Because of the importance of long-range interactions in an elastic medium, we generalize the Burridge-Knopoff slider-block model to include variable range stress transfer. We find that the Burridge-Knopoff model with long-range stress transfer exhibits qualitatively different behavior than the corresponding long-range cellular automata models and the usual Burridge-Knopoff model with nearest-neighbor stress transfer, depending on how quickly the friction force weakens with increasing velocity. Extensive simulations of quasiperiodic characteristic events, mode-switching phenomena, ergodicity, and waiting-time distributions are also discussed. Our results are consistent with the existence of a mean-field critical point and have important implications for our understanding of earthquakes and other driven dissipative systems.Comment: 24 pages 12 figures, revised version for Phys. Rev.

    Quantum Hall effect in narrow graphene ribbons

    Full text link
    The edge states in the integer quantum Hall effect are known to be significantly affected by electrostatic interactions leading to the formation of compressible and incompressible strips at the boundaries of Hall bars. We show here, in a combined experimental and theoretical analysis, that this does not hold for the quantum Hall effect in narrow graphene ribbons. In our graphene Hall bar, which is only 60 nm wide, we observe the quantum Hall effect up to Landau level index k=2 and show within a zero free-parameter model that the spatial extent of the compressible and incompressible strips is of a similar magnitude as the magnetic length. We conclude that in narrow graphene ribbons the single-particle picture is a more appropriate description of the quantum Hall effect and that electrostatic effects are of minor importance.Comment: RevTex, 5 pages, 4 figures (matches published version

    Simulation of the Burridge-Knopoff Model of Earthquakes with Variable Range Stress Transfer

    Full text link
    Simple models of earthquake faults are important for understanding the mechanisms for their observed behavior, such as Gutenberg-Richter scaling and the relation between large and small events, which is the basis for various forecasting methods. Although cellular automaton models have been studied extensively in the long-range stress transfer limit, this limit has not been studied for the Burridge-Knopoff model, which includes more realistic friction forces and inertia. We find that the latter model with long-range stress transfer exhibits qualitatively different behavior than both the long-range cellular automaton models and the usual Burridge-Knopoff model with nearest neighbor springs, depending on the nature of the velocity-weakening friction force. This result has important implications for our understanding of earthquakes and other driven dissipative systems.Comment: 4 pages, 5 figures, published on Phys. Rev. Let

    Nearby Microlensing Events - Identification of the Candidates for the SIM

    Get PDF
    The Space Interferometry Mission (SIM) is the instrument of choice when it comes to observing astrometric microlensing events where nearby, usually high-proper-motion stars (``lenses''), pass in front of more distant stars (``sources''). Each such encounter produces a deflection in the source's apparent position that when observed by SIM can lead to a precise mass determination of the nearby lens star. We search for lens-source encounters during the 2005-2015 period using Hipparcos, ACT and NLTT to select lenses, and USNO-A2.0 to search for the corresponding sources, and rank these by the SIM time required for a 1% mass measurement. For Hipparcos and ACT lenses, the lens distance and lens-source impact parameter are precisely determined so the events are well characterized. We present 32 candidates beginning with a 61 Cyg A event in 2012 that requires only a few minutes of SIM time. Proxima Centauri and Barnard's star each generate several events. For NLTT lenses, the distance is known only to a factor of 3, and the impact parameter only to 1''. Together, these produce uncertainties of a factor ~10 in the amount of SIM time required. We present a list of 146 NLTT candidates and show how single-epoch CCD photometry of the candidates could reduce the uncertainty in SIM time to a factor of ~1.5.Comment: ApJ accepted, 31 pages (inc. 5 tables), 5 figures. t SIM refine

    Professor Bork on Vertical Price Fixing

    Get PDF

    Professor Bork on Vertical Price Fixing: A Rejoinder

    Get PDF

    Observations of a propagating vortex in a tidal current

    Get PDF
    While observing the hydrodynamics and geomorphology of the entrance to Burrill Lake, a small estuary on the south coast of New South Wales, Australia, a striking vortex phenomenon was observed. This vortex is described and interpreted
    corecore