62 research outputs found

    Successful use of a 20% lipid emulsion to resuscitate a patient after a presumed bupivacaine-related cardiac arrest.

    No full text
    THE infusion of a lipid emulsion has been shown to increase the survival rates of both rats and dogs that have been resuscitated after an overdose of bupivacaine. [1][2][3] We report the first successful use of a 20% lipid infusion to resuscitate a patient from a prolonged cardiac arrest that immediately followed the placement of an interscalene block with bupivacaine and mepivacaine. Case Report The patient was a 58-yr-old, 82-kg, 170-cm male who presented for arthroscopic repair of a torn rotator cuff in the right shoulder. His medical history was significant for coronary artery bypass graft surgery at age 43 yr. He gave a history of angina upon exertion and occasionally at rest. He declined further preoperative cardiac workup but was considered by his cardiologist to be stable on medical therapy. This included nitroglycerine as needed, lisinopril, atenolol isosorbide mononitrate, and clopidogrel and enteric-coated aspirin, both of which had been discontinued 1 week previously. His preoperative electrocardiogram revealed a right bundle-branch block, a left anterior hemiblock, and evidence of an old anterior wall myocardial infarction. The patient arrived at the operating room holding area, where standard monitors were applied. Blood pressure was 120/80 mmHg, room air oxygen saturation measured by pulse oximetry was 98%, and heart rate was 60 beats/min. Supplemental oxygen was delivered at 3 l/min via a nasal cannula. A 20-gauge intravenous catheter was placed in the dorsum of his left hand, through which 2 mg midazolam and 50 g fentanyl were administered. A 50-mm, 22-gauge Stimuplex Ā® insulated needle was connected to a Stimuplex Ā® -DIG nerve stimulator (both B. Braun, Inc., Bethlehem, PA), and the interscalene groove was identified at the level of C6. The brachial plexus was identified by eliciting biceps stimulation (0.1-ms duration, 2 Hz) at 0.34 mA, following which 40 ml local anesthetic solution (20 ml bupivacaine, 0.5%, and 20 ml mepivacaine, 1.5%) were injected slowly (over approximately 2.5 min) in 5-ml increments with gentle aspiration between doses. The patient was awake and conversant during the performance of the block. At no time was any blood aspirated, nor did he report pain or paresthesias. Approximately 30 s after removal of the block needle, the patient became incoherent and then developed a tonic-clonic seizure. Oxygen was delivered by a facemask attached to a self-inflating resuscitation bag while 50 mg propofol was injected intravenously. The seizure stopped, and spontaneous respirations resumed. Approximately 90 s later, the patient began to seize again; this time, 100 mg intravenous propofol was administered. The electrocardiogram showed asystole, and no pulse, by carotid or femoral palpation, or blood pressure was detectable. Advanced cardiac life support was immediately started. The trachea was intubated, and end-tidal carbon dioxide was detected with an EasyCap Ā® II (Nellcor Inc., Hayward, CA). Tube position was confirmed by auscultation, after which chest compressions were immediately resumed. During the first 20 min of advanced cardiac life support, a total of 3 mg epinephrine, given in divided doses, 2 mg atropine, 300 mg amiodarone, and 40 U arginine vasopressin were administered. In addition, monophasic defibrillation was used at escalating energy levels-200, 300, 360, and 360 J, according to the advanced cardiac life support protocol. Cardiac rhythms included ventricular tachycardia with a pulse, pulseless ventricular tachycardia that momentarily became ventricular fibrillation, and eventually asystole. The arrhythmias observed during most of the resuscitation period were pulseless ventricular tachycardia and asystole. After 20 min, at which time plans were being made to institute cardiopulmonary bypass, the administration of a lipid emulsion was suggested, and 100 ml of 20% Intralipid (for Baxter Pharmaceuticals by Fresenius Kabi, Uppsala, Sweden) was given through the peripheral intravenous catheter. Cardiac compressions continued, and a defibrillation shock at 360 J was given. Within seconds, a single sinus beat appeared on the electrocardiogram, and 1 mg atropine and 1 mg epinephrine were administered. Within 15 s, while external chest compressions were continued, the cardiac rhythm returned to sinus at a rate of 90 beats/min. The blood pressure and pulse became detectable. An infusion of lipid emulsion was started and continued at 0.5 ml Ā· kg ĻŖ1 Ā· min ĻŖ1 over the following 2 h and then discontinued. The patient remained in sinus rhythm. He was weaned from mechanical ventilation, and his trachea was extubated, approximately 2.5 h later. He was awake and responsive, and had right upper extremity weakness consistent with a brachial plexus block. No neurologic sequelae were sustained, and he was subsequently transferred to a monitored setting for overnight observation. There was no evidence of complications secondary to the administration of intralipid (i.e., pancreatitis) during the following 2 weeks. Because the patient had a cardiac arrest after which he had increased levels of cardiac enzymes, he agreed to undergo cardiac catheterization. This revealed total occlusion of the right coronary artery and a left ventricular ejection fraction of 32%. As a consequence, an automatic implantable cardiac defibrillator was inserted without any complications, and the patient was discharged home

    Characterization of curriculum materials to support NGSS-aligned engineering instruction in chemistry teaching

    No full text
    Ā© 2020 School Science and Mathematics Association Curriculum materials can play a major role in shaping teachersā€™ thinking about instruction and content as well as serve as a support for teachersā€™ learning. With the inclusion of engineering in NGSS, many teachers may be turning to existing curriculum materials to help them infuse engineering into their science classroom, especially when they do not have the time or opportunity for professional development sessions. In this study, we identified a sample of curriculum materials freely available online to chemistry teachers trying to incorporate engineering in the topics of stoichiometry and/or energy, common topics in secondary chemistry curricula. Using qualitative coding methods, we examined what this sample had to offer the chemistry teachers in the way of developing their understanding of engineering and teaching it. Our findings indicate that within our sample there are limited existing curriculum materials to support teachersā€™ engineering incorporation into secondary chemistry, and the support for teachers varied in terms of content and usefulness across the materials. The materials provided procedural information for activities but lacked in supports for teacher learning and student development beyond the procedure. Implications for the enactment of NGSS in secondary science along with needs for curriculum development and teacher learning are discussed
    • ā€¦
    corecore