29,288 research outputs found

    Enhanced visibility of graphene: effect of one-dimensional photonic crystal

    Full text link
    We investigate theoretically the light reflectance of a graphene layer prepared on the top of one-dimensional Si/SiO2 photonic crystal (1DPC). It is shown that the visibility of the graphene layers is enhanced greatly when 1DPC is added, and the visibility can be tuned by changing the incident angle and light wavelengths. This phenomenon is caused by the absorption of the graphene layer and the enhanced reflectance of the 1DPC.Comment: 4 pages, 4 figures. published, ApplPhysLett_91_18190

    Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry

    Full text link
    We perform a complete classification of two-band \bk\cdot\mathbf{p} theories at band crossing points in 3D semimetals with nn-fold rotation symmetry and broken time-reversal symmetry. Using this classification, we show the existence of new 3D topological semimetals characterized by C4,6C_{4,6}-protected double-Weyl nodes with quadratic in-plane (along kx,yk_{x,y}) dispersion or C6C_6-protected triple-Weyl nodes with cubic in-plane dispersion. We apply this theory to the 3D ferromagnet HgCr2_2Se4_4 and confirm it is a double-Weyl metal protected by C4C_4 symmetry. Furthermore, if the direction of the ferromagnetism is shifted away from the [001]- to the [111]-axis, the double-Weyl node splits into four single Weyl nodes, as dictated by the point group S6S_6 of that phase. Finally, we discuss experimentally relevant effects including splitting of multi-Weyl nodes by applying CnC_n breaking strain and the surface Fermi arcs in these new semimetals.Comment: 4+ pages, 2 figures, 1 tabl

    On data skewness, stragglers, and MapReduce progress indicators

    Full text link
    We tackle the problem of predicting the performance of MapReduce applications, designing accurate progress indicators that keep programmers informed on the percentage of completed computation time during the execution of a job. Through extensive experiments, we show that state-of-the-art progress indicators (including the one provided by Hadoop) can be seriously harmed by data skewness, load unbalancing, and straggling tasks. This is mainly due to their implicit assumption that the running time depends linearly on the input size. We thus design a novel profile-guided progress indicator, called NearestFit, that operates without the linear hypothesis assumption and exploits a careful combination of nearest neighbor regression and statistical curve fitting techniques. Our theoretical progress model requires fine-grained profile data, that can be very difficult to manage in practice. To overcome this issue, we resort to computing accurate approximations for some of the quantities used in our model through space- and time-efficient data streaming algorithms. We implemented NearestFit on top of Hadoop 2.6.0. An extensive empirical assessment over the Amazon EC2 platform on a variety of real-world benchmarks shows that NearestFit is practical w.r.t. space and time overheads and that its accuracy is generally very good, even in scenarios where competitors incur non-negligible errors and wide prediction fluctuations. Overall, NearestFit significantly improves the current state-of-art on progress analysis for MapReduce

    Semileptonic B decays into excited charmed mesons from QCD sum rules

    Get PDF
    Exclusive semileptonic BB decays into excited charmed mesons are studied with QCD sum rules in the leading order of heavy quark effective theory. Two universal Isgur-Wise functions \tau and \zeta for semileptonic B decays into four lowest lying excited DD mesons (D1D_1, D2D_2^*, D0D'_0, and D1D'_1) are determined. The decay rates and branching ratios for these processes are calculated.Comment: RevTeX, 17 pages including 2 figure

    Lateral in-plane coupling between graphene nanoribbons: a density functional study

    Get PDF
    Properties brought about by lateral in-plane coupling between graphene nanoribbons (GNRs) are investigated using the first-principle total energy calculations. It is found that, when two GNRs approach each other, the lateral coupling between the two brings about edge state splitting. Between zigzag-edged graphene nanoribbons (ZGNRs), the coupling mainly results from Coulomb and spin-spin interaction, while for armchair-edged graphene nanoribbons (AGNRs), it is from Coulomb interaction only. It is further found that the maximum inter-ribbon distance for effective coupling depends on the type of ribbons, which is ∼10 Å for ZGNRs, but ∼6 Å for AGNRs. Also, displacements of the GNRs along the ribbon direction are found to affect the electronic properties of the coupled GNRs. The results may be important for the microminiaturization of future nanoelectronic and spintronic devices based on graphene. © 2012 American Institute of Physics.published_or_final_versio
    corecore