25,602 research outputs found
An ab-initio theoretical investigation of the soft-magnetic properties of permalloys
We study Ni80Fe20-based permalloys with the relativistic spin-polarized
Korringa-Kohn-Rostoker electronic structure method. Treating the compositional
disorder with the coherent potential approximation, we investigate how the
magnetocrystalline anisotropy, K, and magnetostriction, lambda, of Ni-rich
Ni-Fe alloys vary with the addition of small amounts of non-magnetic transition
metals, Cu and Mo. From our calculations we follow the trends in K and lambda
and find the compositions of Ni-Fe-Cu and Ni-Fe-Mo where both are near zero.
These high permeability compositions of Ni-Fe-Cu and Ni-Fe-Mo match well with
those discovered experimentally. We monitor the connection of the magnetic
anisotropy with the number of minority spin electrons, Nmin. By raising Nmin
via artificially increasing the band-filling of Ni80Fe20, we are able to
reproduce the key features that underpin the magnetic softening we find in the
ternary alloys. The effect of band-filling on the dependence of
magnetocrystalline anisotropy on atomic short-range order in Ni80Fe20 is also
studied. Our calculations, based on a static concentration wave theory,
indicate that the susceptibility of the high permeability of the Ni-Fe-Cu and
Ni-Fe-Mo alloys to their annealing conditions is also strongly dependent on the
alloys' compositions. An ideal soft magnet appears from these calculations.Comment: 20 pages, 6 figure
Prompt Electromagnetic Transients from Binary Black Hole Mergers
Binary black hole (BBH) mergers provide a prime source for current and future
interferometric GW observatories. Massive BBH mergers may often take place in
plasma-rich environments, leading to the exciting possibility of a concurrent
electromagnetic (EM) signal observable by traditional astronomical facilities.
However, many critical questions about the generation of such counterparts
remain unanswered. We explore mechanisms that may drive EM counterparts with
magnetohydrodynamic simulations treating a range of scenarios involving
equal-mass black-hole binaries immersed in an initially homogeneous fluid with
uniform, orbitally aligned magnetic fields. We find that the time development
of Poynting luminosity, which may drive jet-like emissions, is relatively
insensitive to aspects of the initial configuration. In particular, over a
significant range of initial values, the central magnetic field strength is
effectively regulated by the gas flow to yield a Poynting luminosity of
, with BBH mass
scaled to and ambient density . We also calculate the
direct plasma synchrotron emissions processed through geodesic ray-tracing.
Despite lensing effects and dynamics, we find the observed synchrotron flux
varies little leading up to merger.Comment: 22 pages, 21 figures; additional reference + clarifying text added to
match published versio
Anomalous Hall Effect due to the spin chirality in the Kagom\'{e} lattice
We consider a model for a two dimensional electron gas moving on a kagom\'{e}
lattice and locally coupled to a chiral magnetic texture. We show that the
transverse conductivity does not vanish even if spin-orbit
coupling is not present and it may exhibit unusual behavior. Model parameters
are the chirality, the number of conduction electrons and the amplitude of the
local coupling. Upon varying these parameters, a topological transition
characterized by change of the band Chern numbers occur. As a consequence,
can be quantized, proportional to the chirality or have a non
monotonic behavior upon varying these parameters.Comment: 8 pages, 7 figure
Topologically Massive Gauge Theories and their Dual Factorised Gauge Invariant Formulation
There exists a well-known duality between the Maxwell-Chern-Simons theory and
the self-dual massive model in 2+1 dimensions. This dual description has been
extended to topologically massive gauge theories (TMGT) in any dimension. This
Letter introduces an unconventional approach to the construction of this type
of duality through a reparametrisation of the master theory action. The dual
action thereby obtained preserves the same gauge symmetry structure as the
original theory. Furthermore, the dual action is factorised into a propagating
sector of massive gauge invariant variables and a sector with gauge variant
variables defining a pure topological field theory. Combining results obtained
within the Lagrangian and Hamiltonian formulations, a new completed structure
for a gauge invariant dual factorisation of TMGT is thus achieved.Comment: 1+7 pages, no figure
- …