6 research outputs found
Spectral analysis on infinite Sierpinski fractafolds
A fractafold, a space that is locally modeled on a specified fractal, is the
fractal equivalent of a manifold. For compact fractafolds based on the
Sierpinski gasket, it was shown by the first author how to compute the discrete
spectrum of the Laplacian in terms of the spectrum of a finite graph Laplacian.
A similar problem was solved by the second author for the case of infinite
blowups of a Sierpinski gasket, where spectrum is pure point of infinite
multiplicity. Both works used the method of spectral decimations to obtain
explicit description of the eigenvalues and eigenfunctions. In this paper we
combine the ideas from these earlier works to obtain a description of the
spectral resolution of the Laplacian for noncompact fractafolds. Our main
abstract results enable us to obtain a completely explicit description of the
spectral resolution of the fractafold Laplacian. For some specific examples we
turn the spectral resolution into a "Plancherel formula". We also present such
a formula for the graph Laplacian on the 3-regular tree, which appears to be a
new result of independent interest. In the end we discuss periodic fractafolds
and fractal fields