1,361 research outputs found
Systematics of parton-medium interaction from RHIC to LHC
Despite a wealth of experimental data for high-P_T processes in heavy-ion
collisions, discriminating between different models of hard parton-medium
interactions has been difficult. A key reason is that the pQCD parton spectrum
at RHIC is falling so steeply that distinguishing even a moderate shift in
parton energy from complete parton absorption is essentially impossible. In
essence, energy loss models are effectively only probed in the vicinity of zero
energy loss and, as a result, at RHIC energies only the pathlength dependence
of energy loss offers some discriminating power. At LHC however, this is no
longer the case: Due to the much flatter shape of the parton p_T spectra
originating from 2.76 AGeV collisions, the available data probe much deeper
into the model dynamics. A simultaneous fit of the nuclear suppression at both
RHIC and LHC energies thus has great potential for discriminating between
various models that yield equally good descriptions of RHIC data alone.Comment: Talk given at Quark Matter 2011, 22-28 May 2011, Annecy, Franc
Directed flow, a signal for the phase transition in Relativistic Nuclear Collisions?
The sign change of the slope of the directed flow of baryons has been
predicted as a signal for a first order phase transition within fluid dynamical
calculations. Recently, the directed flow of identified particles has been
measured by the STAR collaboration in the beam energy scan (BES) program. In
this article, we examine the collision energy dependence of directed flow
in fluid dynamical model descriptions of heavy ion collisions for
GeV. The first step is to reproduce the existing
predictions within pure fluid dynamical calculations. As a second step we
investigate the influence of the order of the phase transition on the
anisotropic flow within a state-of-the-art hybrid approach that describes other
global observables reasonably well. We find that, in the hybrid approach, there
seems to be no sensitivity of the directed flow on the equation of state and in
particular on the existence of a first order phase transition. In addition, we
explore more subtle sensitivities like e.g. the Cooper-Frye transition
criterion and discuss how momentum conservation and the definition of the event
plane affects the results. At this point, none of our calculations matches
qualitatively the behavior of the STAR data, the values of the slopes are
always larger than in the data.Comment: 7 pages, 7 figure
Elastic energy loss with respect to the reaction plane in a Monte-Carlo model
We present a computation of nuclear modification factor with respect
to the reaction plane in Au+Au collisions at GeV, based on
a Monte-Carlo model of elastic energy loss of hard partons traversing the bulk
hydrodynamical medium created in ultrarelativistic heavy-ion collisions. We
find the incoherent nature of elastic energy loss incompatible with the
measured data.Comment: 5 pages, 2 figure
Energy loss in a fluctuating hydrodynamical background
Recently it has become apparent that event-by-event fluctuations in the
initial state of hydrodynamical modelling of ultrarelativistic heavy-ion
collisions are crucial in order to understand the full centrality dependence of
the elliptic flow coefficient v_2. In particular, in central collisions the
density fluctuations play a major role in generating the spatial eccentricity
in the initial state. This raises the question to what degree high P_T physics,
in particular leading-parton energy loss, which takes place in the background
of an evolving medium, is sensitive to the presence of the event-by-event
density fluctuations in the background. In this work, we report results for the
effects of fluctuations on the nuclear modification factor R_AA in both central
and noncentral sqrt(s_NN) = 200 GeV Au+Au collisions at RHIC. Two different
types of energy-loss models, a radiative and an elastic, are considered. In
particular, we study the dependence of the results on the assumed spatial size
of the density fluctuations, and discuss the angular modulation of R_AA with
respect to the event plane.Comment: 9 pages, 9 figure
Sensitivity analysis of the meteorological preprocessor MPP-FMI 3.0 using algorithmic differentiation
The meteorological input parameters for urbanand local-scale dispersion models can be evaluated by pre-processing meteorological observations, using a boundarylayer parameterisation model. This study presents a sensitivity analysis of a meteorological preprocessor model (MPP-FMI) that utilises readily available meteorological data as input. The sensitivity of the preprocessor to meteorological input was analysed using algorithmic differentiation (AD). The AD tool used was TAPENADE. The AD method numerically evaluates the partial derivatives of functions that are implemented in a computer program. In this study, we focus on the evaluation of vertical fluxes in the atmosphere and in particular on the sensitivity of the predicted inverse Obukhov length and friction velocity on the model input parameters. The study shows that the estimated inverse Obukhov length and friction velocity are most sensitive to wind speed and second most sensitive to solar irradiation. The dependency on wind speed is most pronounced at low wind speeds. The presented results have implications for improving the meteorological preprocessing models. AD is shown to be an efficient tool for studying the ranges of sensitivities of the predicted parameters on the model input values quantitatively. A wider use of such advanced sensitivity analysis methods could potentially be very useful in analysing and improving the models used in atmospheric sciences.Peer reviewe
- …