81 research outputs found

    Aggregating Dependency Graphs into Voting Agendas in Multi-Issue Elections

    Get PDF
    Many collective decision making problems have a combinatorial structure: the agents involved must decide on multiple issues and their preferences over one issue may depend on the choices adopted for some of the others. Voting is an attractive method for making collective decisions, but conducting a multi-issue election is challenging. On the one hand, requiring agents to vote by expressing their preferences over all combinations of issues is computationally infeasible; on the other, decomposing the problem into several elections on smaller sets of issues can lead to paradoxical outcomes. Any pragmatic method for running a multi-issue election will have to balance these two concerns. We identify and analyse the problem of generating an agenda for a given election, specifying which issues to vote on together in local elections and in which order to schedule those local elections

    Adjoint computations by algorithmic differentiation of a parallel solver for time-dependent PDEs

    Get PDF
    A computational fluid dynamics code is differentiated using algorithmic differentiation (AD) in both tangent and adjoint modes. The two novelties of the present approach are 1) the adjoint code is obtained by letting the AD tool Tapenade invert the complete layer of message passing interface (MPI) communications, and 2) the adjoint code integrates time-dependent, non-linear and dissipative (hence physically irreversible) PDEs with an explicit time integration loop running for ca. 10610^{6} time steps. The approach relies on using the Adjoinable MPI library to reverse the non-blocking communication patterns in the original code, and by controlling the memory overhead induced by the time-stepping loop with binomial checkpointing. A description of the necessary code modifications is provided along with the validation of the computed derivatives and a performance comparison of the tangent and adjoint codes.Comment: Submitted to Journal of Computational Scienc

    Aggregating Dependency Graphs into Voting Agendas in Multi-Issue Elections

    Get PDF

    Rationalisation of Profiles of Abstract Argumentation Frameworks

    Get PDF

    Rationalisation of Profiles of Abstract Argumentation Frameworks

    Get PDF
    International audienceDifferent agents may have different points of view. This can be modelled using different abstract argumentation frameworks , each consisting of a set of arguments and a binary attack-relation between them. A question arising in this context is whether the diversity of views observed in such a profile of argumentation frameworks is consistent with the assumption that every individual argumentation framework is induced by a combination of, first, some basic factual attack-relation between the arguments and, second, the personal preferences of the agent concerned. We treat this question of rationalisability of a profile as an algorithmic problem and identify tractable and intractable cases. This is useful for understanding what types of profiles can reasonably be expected to come up in a multiagent system

    Sequential Deliberation for Social Choice

    Full text link
    In large scale collective decision making, social choice is a normative study of how one ought to design a protocol for reaching consensus. However, in instances where the underlying decision space is too large or complex for ordinal voting, standard voting methods of social choice may be impractical. How then can we design a mechanism - preferably decentralized, simple, scalable, and not requiring any special knowledge of the decision space - to reach consensus? We propose sequential deliberation as a natural solution to this problem. In this iterative method, successive pairs of agents bargain over the decision space using the previous decision as a disagreement alternative. We describe the general method and analyze the quality of its outcome when the space of preferences define a median graph. We show that sequential deliberation finds a 1.208- approximation to the optimal social cost on such graphs, coming very close to this value with only a small constant number of agents sampled from the population. We also show lower bounds on simpler classes of mechanisms to justify our design choices. We further show that sequential deliberation is ex-post Pareto efficient and has truthful reporting as an equilibrium of the induced extensive form game. We finally show that for general metric spaces, the second moment of of the distribution of social cost of the outcomes produced by sequential deliberation is also bounded
    corecore