16 research outputs found

    Inhomogeneous scalar field solutions and inflation

    Get PDF
    We present new exact cosmological inhomogeneous solutions for gravity coupled to a scalar field in a general framework specified by the parameter λ\lambda. The equations of motion (and consequently the solutions) in this framework correspond either to low-energy string theory or Weyl integrable spacetime according to the sign of λ\lambda. We show that different inflationary behaviours are possible, as suggested by the study of the violation of the strong energy condition. Finally, by the analysis of certain curvature scalars we found that some of the solutions may be nonsingular.Comment: LaTex file, 14 page

    On the back reaction of gravitational and particle emission and absorption from straight thick cosmic strings: A toy model

    Full text link
    The emission and absorption of gravitational waves and massless particles of an infinitely long straight cosmic string with finite thickness are studied. It is shown in a general term that the back reaction of the emission and absorption {\em always} makes the symmetry axis of the string singular. The singularity is a scalar singularity and cannot be removed.Comment: To appear in Gen. Relativ. Gra

    Spherically Symmetric Inflation

    Full text link
    It is shown in this letter that in the framework of an inhomogeneous geometry and a massive non self-interacting scalar field with spherical symmetry, one needs a homogeneous patch bigger than a dizaine of horizons in order to start inflation. The results are completly independent of initial conditions on the spatial distribution of the scalar field. The initial condition on the metric parameters are also justified. This is a generalization of the results obtained in Ref.[1], showing that their conclusions are rather robust.Comment: Latex file, 4 pages, no figure

    Friedmann Equation and Stability of Inflationary Higher Derivative Gravity

    Get PDF
    Stability analysis on the De Sitter universe in pure gravity theory is known to be useful in many aspects. We first show how to complete the proof of an earlier argument based on a redundant field equation. It is shown further that the stability condition applies to k≠0k \ne 0 Friedmann-Robertson-Walker spaces based on the non-redundant Friedmann equation derived from a simple effective Lagrangian. We show how to derive this expression for the Friedmann equation of pure gravity theory. This expression is also generalized to include scalar field interactions.Comment: Revtex, 6 pages, Add two more references, some typos correcte

    Kaluza-Klein Induced Gravity Inflation

    Full text link
    A D-dimensional induced gravity theory is studied carefully in a 4+(D−4)4 + (D-4) dimensional Friedmann-Robertson-Walker space-time. We try to extract information of the symmetry breaking potential in search of an inflationary solution with non-expanding internal-space. We find that the induced gravity model imposes strong constraints on the form of symmetry breaking potential in order to generate an acceptable inflationary universe. These constraints are analyzed carefully in this paper.Comment: 10 pages, title changed, corrected some typos, two additional comments adde

    Inflationary Universe in Higher Derivative Induced Gravity

    Get PDF
    In an induced-gravity model, the stability condition of an inflationary slow-rollover solution is shown to be ϕ0∂ϕ0V(ϕ0)=4V(ϕ0)\phi_0 \partial_{\phi_0}V(\phi_0)=4V(\phi_0). The presence of higher derivative terms will, however, act against the stability of this expanding solution unless further constraints on the field parameters are imposed. We find that these models will acquire a non-vanishing cosmological constant at the end of inflation. Some models are analyzed for their implication to the early universe.Comment: 6 pages, two typos correcte
    corecore