6,545 research outputs found
Ferromagnetic phase transition for the spanning-forest model (q \to 0 limit of the Potts model) in three or more dimensions
We present Monte Carlo simulations of the spanning-forest model (q \to 0
limit of the ferromagnetic Potts model) in spatial dimensions d=3,4,5. We show
that, in contrast to the two-dimensional case, the model has a "ferromagnetic"
second-order phase transition at a finite positive value w_c. We present
numerical estimates of w_c and of the thermal and magnetic critical exponents.
We conjecture that the upper critical dimension is 6.Comment: LaTex2e, 4 pages; includes 6 Postscript figures; Version 2 has
expanded title as published in PR
Dynamic critical behavior of the Chayes-Machta-Swendsen-Wang algorithm
We study the dynamic critical behavior of the Chayes-Machta dynamics for the
Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang
dynamics for the q-state Potts model to noninteger q, in two and three spatial
dimensions, by Monte Carlo simulation. We show that the Li-Sokal bound z \ge
\alpha/\nu is close to but probably not sharp in d=2, and is far from sharp in
d=3, for all q. The conjecture z \ge \beta/\nu is false (for some values of q)
in both d=2 and d=3.Comment: Revtex4, 4 pages including 4 figure
Grassmann Integral Representation for Spanning Hyperforests
Given a hypergraph G, we introduce a Grassmann algebra over the vertex set,
and show that a class of Grassmann integrals permits an expansion in terms of
spanning hyperforests. Special cases provide the generating functions for
rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All
these results are generalizations of Kirchhoff's matrix-tree theorem.
Furthermore, we show that the class of integrals describing unrooted spanning
(hyper)forests is induced by a theory with an underlying OSP(1|2)
supersymmetry.Comment: 50 pages, it uses some latex macros. Accepted for publication on J.
Phys.
Cluster simulations of loop models on two-dimensional lattices
We develop cluster algorithms for a broad class of loop models on
two-dimensional lattices, including several standard O(n) loop models at n \ge
1. We show that our algorithm has little or no critical slowing-down when 1 \le
n \le 2. We use this algorithm to investigate the honeycomb-lattice O(n) loop
model, for which we determine several new critical exponents, and a
square-lattice O(n) loop model, for which we obtain new information on the
phase diagram.Comment: LaTex2e, 4 pages; includes 1 table and 2 figures. Totally rewritten
in version 2, with new theory and new data. Version 3 as published in PR
Social Effects in Science: Modelling Agents for a Better Scientific Practice
Science is a fundamental human activity and we trust its results because it
has several error-correcting mechanisms. Its is subject to experimental tests
that are replicated by independent parts. Given the huge amount of information
available, scientists have to rely on the reports of others. This makes it
possible for social effects to influence the scientific community. Here, an
Opinion Dynamics agent model is proposed to describe this situation. The
influence of Nature through experiments is described as an external field that
acts on the experimental agents. We will see that the retirement of old
scientists can be fundamental in the acceptance of a new theory. We will also
investigate the interplay between social influence and observations. This will
allow us to gain insight in the problem of when social effects can have
negligible effects in the conclusions of a scientific community and when we
should worry about them.Comment: 14 pages, 5 figure
Completeness of the classical 2D Ising model and universal quantum computation
We prove that the 2D Ising model is complete in the sense that the partition
function of any classical q-state spin model (on an arbitrary graph) can be
expressed as a special instance of the partition function of a 2D Ising model
with complex inhomogeneous couplings and external fields. In the case where the
original model is an Ising or Potts-type model, we find that the corresponding
2D square lattice requires only polynomially more spins w.r.t the original one,
and we give a constructive method to map such models to the 2D Ising model. For
more general models the overhead in system size may be exponential. The results
are established by connecting classical spin models with measurement-based
quantum computation and invoking the universality of the 2D cluster states.Comment: 4 pages, 1 figure. Minor change
Tetromino tilings and the Tutte polynomial
We consider tiling rectangles of size 4m x 4n by T-shaped tetrominoes. Each
tile is assigned a weight that depends on its orientation and position on the
lattice. For a particular choice of the weights, the generating function of
tilings is shown to be the evaluation of the multivariate Tutte polynomial
Z\_G(Q,v) (known also to physicists as the partition function of the Q-state
Potts model) on an (m-1) x (n-1) rectangle G, where the parameter Q and the
edge weights v can take arbitrary values depending on the tile weights.Comment: 8 pages, 6 figure
Bulk, surface and corner free energy series for the chromatic polynomial on the square and triangular lattices
We present an efficient algorithm for computing the partition function of the
q-colouring problem (chromatic polynomial) on regular two-dimensional lattice
strips. Our construction involves writing the transfer matrix as a product of
sparse matrices, each of dimension ~ 3^m, where m is the number of lattice
spacings across the strip. As a specific application, we obtain the large-q
series of the bulk, surface and corner free energies of the chromatic
polynomial. This extends the existing series for the square lattice by 32
terms, to order q^{-79}. On the triangular lattice, we verify Baxter's
analytical expression for the bulk free energy (to order q^{-40}), and we are
able to conjecture exact product formulae for the surface and corner free
energies.Comment: 17 pages. Version 2: added 4 further term to the serie
- …