4,956 research outputs found

    Measurement of retinal vessel widths from fundus images based on 2-D modeling

    Get PDF
    Changes in retinal vessel diameter are an important sign of diseases such as hypertension, arteriosclerosis and diabetes mellitus. Obtaining precise measurements of vascular widths is a critical and demanding process in automated retinal image analysis as the typical vessel is only a few pixels wide. This paper presents an algorithm to measure the vessel diameter to subpixel accuracy. The diameter measurement is based on a two-dimensional difference of Gaussian model, which is optimized to fit a two-dimensional intensity vessel segment. The performance of the method is evaluated against Brinchmann-Hansen's half height, Gregson's rectangular profile and Zhou's Gaussian model. Results from 100 sample profiles show that the presented algorithm is over 30% more precise than the compared techniques and is accurate to a third of a pixel

    Optic nerve head segmentation

    Get PDF
    Reliable and efficient optic disk localization and segmentation are important tasks in automated retinal screening. General-purpose edge detection algorithms often fail to segment the optic disk due to fuzzy boundaries, inconsistent image contrast or missing edge features. This paper presents an algorithm for the localization and segmentation of the optic nerve head boundary in low-resolution images (about 20 /spl mu//pixel). Optic disk localization is achieved using specialized template matching, and segmentation by a deformable contour model. The latter uses a global elliptical model and a local deformable model with variable edge-strength dependent stiffness. The algorithm is evaluated against a randomly selected database of 100 images from a diabetic screening programme. Ten images were classified as unusable; the others were of variable quality. The localization algorithm succeeded on all bar one usable image; the contour estimation algorithm was qualitatively assessed by an ophthalmologist as having Excellent-Fair performance in 83% of cases, and performs well even on blurred image

    Salinity and waterlogging on the Esperance Downs Research Station

    Get PDF
    Details the situation on the station so that the demonstration and research programs can be designed and the effect of the treatments assessed. Past work on the station has been briefly summarised and the results of geophysical surveys and additional drilling are given. Surveys of electromagnetic terrain conductivities have shown where salinity is most serious at present. The most deeply penetrating method may have identified areas likely to developing salinity in future

    Topologically Massive Gauge Theory: A Lorentzian Solution

    Get PDF
    We obtain a lorentzian solution for the topologically massive non-abelian gauge theory on AdS space by means of a SU(1, 1) gauge transformation of the previously found abelian solution. There exists a natural scale of length which is determined by the inverse topological mass. The topological mass is proportional to the square of the gauge coupling constant. In the topologically massive electrodynamics the field strength locally determines the gauge potential up to a closed 1-form via the (anti-)self-duality equation. We introduce a transformation of the gauge potential using the dual field strength which can be identified with an abelian gauge transformation. Then we present the map from the AdS space to the pseudo-sphere including the topological mass. This is the lorentzian analog of the Hopf map. This map yields a global decomposition of the AdS space as a trivial circle bundle over the upper portion of the pseudo-sphere which is the Hyperboloid model for the Lobachevski geometry. This leads to a reduction of the abelian field equation onto the pseudo-sphere using a global section of the solution on the AdS space. Then we discuss the integration of the field equation using the Archimedes map from the pseudo-sphere to the cylinder over the ideal Poincare circle. We also present a brief discussion of the holonomy of the gauge potential and the dual-field strength on the upper portion of the pseudo-sphere.Comment: 23 pages, 1 postscript figur

    Design and manufacture of micro-optical arrays using 3D diamond machining techniques

    Full text link
    We describe our work towards the manufacture of micro-optical arrays using freeform diamond machining techniques. Simulations have been done to show the feasibility of manufacturing micro-lens arrays using the slow-tool servo method. Using this technique, master shapes can be produced for replication of micro-lens arrays of either epoxy-on-glass or monolthic glass types. A machine tool path programme has been developed on the machine software platform DIFFSYS, allowing the production of spherical, aspherical and toric arrays. In addition, in theory spatially varying lenslets, sparse arrays and dithered lenslet arrays (for high contrast applications) are possible to produce. In practice, due to the diamond tool limitations not all formats are feasible. Investigations into solving this problem have been carried out and a solution is presented here.Comment: 8 pages, 11 figures. Copyright 2006 Society of Photo-Optical Engineers. This paper will be published in SPIE Conf. Series 6273 and is made available as an electronic preprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or commercial purposes, or modification of the content of the paper are prohibite
    corecore