1,729 research outputs found

    Extracting joint weak values with local, single-particle measurements

    Full text link
    Weak measurement is a new technique which allows one to describe the evolution of postselected quantum systems. It appears to be useful for resolving a variety of thorny quantum paradoxes, particularly when used to study properties of pairs of particles. Unfortunately, such nonlocal or joint observables often prove difficult to measure weakly in practice (for instance, in optics -- a common testing ground for this technique -- strong photon-photon interactions would be needed). Here we derive a general, experimentally feasible, method for extracting these values from correlations between single-particle observables.Comment: 6 page

    Nonlinear optics with less than one photon

    Full text link
    We demonstrate suppression and enhancement of spontaneous parametric down- conversion via quantum interference with two weak fields from a local oscillator (LO). Pairs of LO photons are observed to upconvert with high efficiency for appropriate phase settings, exhibiting an effective nonlinearity enhanced by at least 10 orders of magnitude. This constitutes a two-photon switch, and promises to be useful for a variety of nonlinear optical effects at the quantum level.Comment: 8 pages, 5 figure

    Comment on "A linear optics implementation of weak values in Hardy's paradox"

    Full text link
    A recent experimental proposal by Ahnert and Payne [S.E. Ahnert and M.C. Payne, Phys. Rev. A 70, 042102 (2004)] outlines a method to measure the weak value predictions of Aharonov in Hardy's paradox. This proposal contains flaws such as the state preparation method and the procedure for carrying out the requisite weak measurements. We identify previously published solutions to some of the flaws.Comment: To be published in Physical Review

    Efficient Toffoli Gates Using Qudits

    Get PDF
    The simplest decomposition of a Toffoli gate acting on three qubits requires {\em five} 2-qubit gates. If we restrict ourselves to controlled-sign (or controlled-NOT) gates this number climbs to six. We show that the number of controlled-sign gates required to implement a Toffoli gate can be reduced to just {\em three} if one of the three quantum systems has a third state that is accessible during the computation, i.e. is actually a qutrit. Such a requirement is not unreasonable or even atypical since we often artificially enforce a qubit structure on multilevel quantums systems (eg. atoms, photonic polarization and spatial modes). We explore the implementation of these techniques in optical quantum processing and show that linear optical circuits could operate with much higher probabilities of success

    Full characterization of a three-photon GHZ state using quantum state tomography

    Full text link
    We have performed the first experimental tomographic reconstruction of a three-photon polarization state. Quantum state tomography is a powerful tool for fully describing the density matrix of a quantum system. We measured 64 three-photon polarization correlations and used a "maximum-likelihood" reconstruction method to reconstruct the GHZ state. The entanglement class has been characterized using an entanglement witness operator and the maximum predicted values for the Mermin inequality was extracted.Comment: 3 pages, 3 figure

    Time-reversal and super-resolving phase measurements

    Get PDF
    We demonstrate phase super-resolution in the absence of entangled states. The key insight is to use the inherent time-reversal symmetry of quantum mechanics: our theory shows that it is possible to \emph{measure}, as opposed to prepare, entangled states. Our approach is robust, requiring only photons that exhibit classical interference: we experimentally demonstrate high-visibility phase super-resolution with three, four, and six photons using a standard laser and photon counters. Our six-photon experiment demonstrates the best phase super-resolution yet reported with high visibility and resolution.Comment: 4 pages, 3 figure

    Experimental bound entanglement in a four-photon state

    Full text link
    Entanglement [1, 2] enables powerful new quantum technologies [3-8], but in real-world implementations, entangled states are often subject to decoherence and preparation errors. Entanglement distillation [9, 10] can often counteract these effects by converting imperfectly entangled states into a smaller number of maximally entangled states. States that are entangled but cannot be distilled are called bound entangled [11]. Bound entanglement is central to many exciting theoretical results in quantum information processing [12-14], but has thus far not been experimentally realized. A recent claim for experimental bound entanglement is not supported by their data [15]. Here, we consider a family of four-qubit Smolin states [16], focusing on a regime where the bound entanglement is experimentally robust. We encode the state into the polarization of four photons and show that our state exhibits both entanglement and undistillability, the two defining properties of bound entanglement. We then use our state to implement entanglement unlocking, a key feature of Smolin states [16].Comment: 10 pages, 6 figures. For a simultaneously submitted related work see arXiv:1005.196

    Violation of Bell's Inequality with Photons from Independent Sources

    Get PDF
    We report a violation of Bell's inequality using one photon from a parametric down-conversion source and a second photon from an attenuated laser beam. The two photons were entangled at a beam splitter using the post-selection technique of Shih and Alley [Phys. Rev. Lett. 61, 2921 (1988)]. A quantum interference pattern with a visibility of 91% was obtained using the photons from these independent sources, as compared with a visibility of 99.4% using two photons from a central parametric down-conversion source.Comment: 4 pages, 5 figures; minor change

    Manipulating biphotonic qutrits

    Get PDF
    Quantum information carriers with higher dimension than the canonical qubit offer significant advantages. However, manipulating such systems is extremely difficult. We show how measurement induced non-linearities can be employed to dramatically extend the range of possible transforms on biphotonic qutrits; the three level quantum systems formed by the polarisation of two photons in the same spatio-temporal mode. We fully characterise the biphoton-photon entanglement that underpins our technique, thereby realising the first instance of qubit-qutrit entanglement. We discuss an extension of our technique to generate qutrit-qutrit entanglement and to manipulate any bosonic encoding of quantum information.Comment: 4 pages, 4 figure

    Quantum nonlocality obtained from local states by entanglement purification

    Full text link
    We have applied an entanglement purification protocol to produce a single entangled pair of photons capable of violating a CHSH Bell inequality from two pairs that individually could not. The initial poorly-entangled photons were created by a controllable decoherence that introduced complex errors. All of the states were reconstructed using quantum state tomography which allowed for a quantitative description of the improvement of the state after purification.Comment: 4 pages, 4 figure
    • …
    corecore