1,632 research outputs found
Crystal Field and Dzyaloshinsky-Moriya Interaction in orbitally ordered La_{0.95}Sr_{0.05}MnO_3: An ESR Study
We present a comprehensive analysis of Dzyaloshinsky-Moriya interaction and
crystal-field parameters using the angular dependence of the paramagnetic
resonance shift and linewidth in single crystals of La_{0.95}Sr_{0.05}MnO_3
within the orthorhombic Jahn-Teller distorted phase. The Dzyaloshinsky-Moriya
interaction (~ 1K) results from the tilting of the MnO_6 octahedra against each
other. The crystal-field parameters D and E are found to be of comparable
magnitude (~ 1K) with D ~= -E. This indicates a strong mixing of the |3z^2-r^2>
and |x^2-y^2> states for the real orbital configuration.Comment: 12 pages, 6 figure
Evidences for Tsallis non-extensivity on CMR manganites
We found, from the analysis of vs. curves of some manganese oxides
(manganites), that these systems do not follow the traditional
Maxwell-Boltzmann statistics, but the Tsallis statistics, within the
\QTR{em}{normalized} formalism. Curves were calculated within the mean field
approximation, for various ferromagnetic samples and the results were compared
to measurements of our own and to various other authors published data, chosen
at random from the literature. The agreement between the experimental data and
calculated vs. curve, where is an effective
temperature, is excellent for all the compounds. The entropic parameter, ,
correlates in a simple way with the experimental value of , irrespect
the chemical composition of the compounds, heat treatment or other details on
sample preparation. Examples include (superextensivity),
(extensivity) and (subextensivity) cases.Comment: 12 pages, 3 figure
Structural, magnetic and electrical properties of single crystalline La_(1-x)Sr_xMnO_3 for 0.4 < x < 0.85
We report on structural, magnetic and electrical properties of Sr-doped
LaMnO_3 single crystals for doping levels 0.4 < x < 0.85. The complex
structural and magnetic phase diagram can only be explained assuming
significant contributions from the orbital degrees of freedom. Close to x = 0.6
a ferromagnetic metal is followed by an antiferromagnetic metallic phase below
200 K. This antiferromagnetic metallic phase exists in a monoclinic
crystallographic structure. Following theoretical predictions this metallic
antiferromagnet is expected to reveal an (x^2-y^2)-type orbital order. For
higher Sr concentrations an antiferromagnetic insulator is established below
room temperature.Comment: 8 pages, 7 figure
Playing and Listening to Tailor-Made Notched Music: Cortical Plasticity Induced by Unimodal and Multimodal Training in Tinnitus Patients
Background. The generation and maintenance of tinnitus are assumed to be based on maladaptive functional cortical reorganization. Listening to modified music, which contains no energy in the range of the individual tinnitus frequency, can inhibit the corresponding neuronal activity in the auditory cortex. Music making has been shown to be a powerful stimulator for brain plasticity, inducing changes in multiple sensory systems. Using magnetoencephalographic (MEG) and behavioral measurements we evaluated the cortical plasticity effects of two months of (a) active listening to (unisensory) versus (b) learning to play (multisensory) tailor-made notched music in nonmusician tinnitus patients. Taking into account the fact that uni- and multisensory trainings induce different patterns of cortical plasticity we hypothesized that these two protocols will have different affects. Results. Only the active listening (unisensory) group showed significant reduction of tinnitus related activity of the middle temporal cortex and an increase in the activity of a tinnitus-coping related posterior parietal area. Conclusions. These findings indicate that active listening to tailor-made notched music induces greater neuroplastic changes in the maladaptively reorganized cortical network of tinnitus patients while additional integration of other sensory modalities during training reduces these neuroplastic effects
Recommended from our members
Machine learning techniques for the estimation of limit state thresholds and bridge-specific fragility analysis of R/C bridges
Based on past earthquake events, bridges are the most critical and usually the most vulnerable components of road and rail transport systems, while bridge damage is related to substantial direct and indirect losses. In view of this, the need for direct and reliable assessment of bridge vulnerability has emerged, and several methodologies have been developed using probabilistic analysis for the derivation of fragility curves. A new framework for the derivation of bridge-specific fragility curves is proposed herein, introducing machine learning techniques for a reliable estimation of limit state thresholds of the most critical component of the bridge system (which in standard -ductility based- design is the piers), in terms of a widely used engineering demand parameter, i.e. displacement of control point. A set of parameters affecting the seismic capacity and the failure modes of bridge piers is selected, including geometry, material properties, and reinforcement ratios for cylindrical piers. Training and test sets are generated from multiple inelastic pushover analyses of the pier component, and Artificial Neural Networks (ANN) analysis is performed to derive closed-form relationships for the estimation of limit state thresholds. The latter are compared with closed-form relationships available in the literature, highlighting the effect of machine learning techniques on the reliable estimation of bridge fragility curves for all damage states
Design, realisation and evaluation of a liquid hollow torso phantom appropriate for wearable antenna assessment
This paper examines the design, realization and evaluation of a lightweight and low cost hollow oval cross-section torso phantom appropriate for wearable antenna performance assessment. The phantom consists of an empty inner space (hollow) surrounded by a shell with double plastic walls between which there is a tissue simulating liquid. The phantom’s plastic shell is made of a low loss cast acrylic and the liquid is a commercially available one with properties calibrated for the frequency range of 2 - 6 GHz. The proposed phantom is compared, through simulations, with a full liquid torso phantom and a heterogeneous anthropomorphic voxel phantom. Additionally, the fabricated phantom is compared with human bodies and a homogeneous anthropomorphic solid phantom, through measurements. The phantom performance is tested in terms of electric field distribution of a wearable antenna on its surface and the path loss between two wearable antennas, on either side of the phantom. It is proved that the hollow phantom performance approximates the full liquid phantom when an RF absorbing material is placed in the central hollow region. The phantom performance in terms of S11 wearable antenna measurements is evaluated and found in good agreement with real human bodies in the examined frequency range (2 - 6 GHz). The far field wearable antenna performance of the proposed phantom shows deviation in gain less than 1.5 dB, compared with anthropomorphic phantom
The Orbital Order Parameter in La0.95Sr0.05MnO3 probed by Electron Spin Resonance
The temperature dependence of the electron-spin resonance linewidth in
La0.95Sr0.05MnO3 has been determined and analyzed in the paramagnetic regime
across the orbital ordering transition. From the temperature dependence and the
anisotropy of linewidth and -value the orbital order can be unambiguously
determined via the mixing angle of the wave functions of the -doublet. The linewidth shows a similar evolution with temperature as
resonant x-ray scattering results
Dynamic Collection Scheduling Using Remote Asset Monitoring: Case Study in the UK Charity Sector
Remote sensing technology is now coming onto the market in the waste collection sector. This technology allows waste and recycling receptacles to report their fill levels at regular intervals. This reporting enables collection schedules to be optimized dynamically to meet true servicing needs in a better way and so reduce transport costs and ensure that visits to clients are made in a timely fashion. This paper describes a real-life logistics problem faced by a leading UK charity that services its textile and book donation banks and its high street stores by using a common fleet of vehicles with various carrying capacities. Use of a common fleet gives rise to a vehicle routing problem in which visits to stores are on fixed days of the week with time window constraints and visits to banks (fitted with remote fill-monitoring technology) are made in a timely fashion so that the banks do not become full before collection. A tabu search algorithm was developed to provide vehicle routes for the next day of operation on the basis of the maximization of profit. A longer look-ahead period was not considered because donation rates to banks are highly variable. The algorithm included parameters that specified the minimum fill level (e.g., 50%) required to allow a visit to a bank and a penalty function used to encourage visits to banks that are becoming full. The results showed that the algorithm significantly reduced visits to banks and increased profit by up to 2.4%, with the best performance obtained when the donation rates were more variable
- …