902 research outputs found

    OGLE observations of four X-ray binary pulsars in the SMC

    Full text link
    This paper presents analysis and interpretation of OGLE photometric data of four X-ray binary pulsar systems in the Small Magellanic Cloud: 1WGA J0054.9-7226, RX J0050.7-7316, RX J0049.1-7250, and 1SAX J0103.2-7209. In each case, the probable optical counterpart is identified on the basis of its optical colours. In the case of RX J0050.7-7316 the regular modulation of its optical light curve appears to reveal an ellipsoidal modulation with a period of 1.416 days. Using reasonable masses for the neutron star and the B star, we show that the amplitude and relative depths of the minima of the I-band light curve of RX J0050.7-7316 can be matched with an ellipsoidal model where the B star nearly fills its Roche lobe. For mass ratios in the range of 0.12 to 0.20, the corresponding best-fitting inclinations are about 55 degrees or larger. The neutron star would be eclipsed by the B star at inclinations larger than 60 degrees for this particular mass ratio range. Thus RX J0050.7-7316 is a good candidate system for further study. In particular, we would need additional photometry in several colours, and most importantly, radial velocity data for the B star before we could draw more quantitative conclusions about the component masses

    2MASS J05162881+2607387: A New Low-Mass Double-Lined Eclipsing Binary

    Full text link
    We show that the star known as 2MASS J05162881+2607387 (hereafter J0516) is a double-lined eclipsing binary with nearly identical low-mass components. The spectroscopic elements derived from 18 spectra obtained with the High Resolution Spectrograph on the Hobby-Eberly Telescope during the Fall of 2005 are K_1=88.45 +/- 0.48 km/s and K_2=90.43 +/- 0.60 km/s, resulting in a mass ratio of$q=K_1/K_2 = 0.978 +/- 0.018 and minimum masses of M_1 sin^{3}i=0.775 +/- 0.016 solar masses and M_2 sin^{3}i=0.759 +/- 0.012 solar masses, respectively. We have extensive differential photometry of J0516 obtained over several nights between 2004 January-March (epoch 1) and 2004 October-2005 January plus 2006 January (epoch 2) using the 1m telescope at the Mount Laguna Observatory. The source was roughly 0.1 mag brighter in all three bandpasses during epoch 1 when compared to epoch 2. Also, phased light curves from epoch 1 show considerable out-of-eclipse variability, presumably due to bright spots on one or both stars. In contrast, the phased light curves from epoch 2 show little out-of-eclipse variability. The light curves from epoch 2 and the radial velocity curves were analyzed using our ELC code with updated model atmospheres for low-mass stars. We find the following: M_1=0.787 +/- 0.012 solar masses, R_1=0.788 +/- 0.015 solar radii, M_2=0.770 +/- 0.009 solar masses, and R_2=0.817 +/- 0.010 solar radii. The stars in J0516 have radii that are significantly larger than model predictions for their masses, similar to what is seen in a handful of other well-studied low-mass double-lined eclipsing binaries. We compiled all recent mass and radius determinations from low-mass binaries and determine an empirical mass-radius relation of the form R = 0.0324 + 0.9343M + 0.0374M^2, where the quantities are in solar units.Comment: 16 pages, 10 figures (Figure 1 has degraded quality), to appear in Ap

    Inventory of Black Hole Binaries

    Get PDF
    A small group of X-ray binaries currently provides the best evidence for the existence of stellar-mass black holes. These objects are interacting binary systems where the X-rays arise from accretion of material onto a compact object (i.e. an object with a radius of less than a few hundred km). In some favourable cases, optical studies of the companion star lead to dynamical mass estimates for both components. In 17 cases, the mass of the compact object an X-ray binary has been shown to exceed the maximum mass of a stable neutron star (about 3 solar masses), which leads to the conclusion that these objects are black holes. In this contribution I will review the basic properties of these black hole binaries

    A Multi-Wavelength, Multi-Epoch Study of the Soft X-Ray Transient Prototype, V616 Mon (A0620-00)

    Get PDF
    We have obtained optical and infrared photometry of the soft x-ray transient prototype V616 Mon (A0620-00). From this photometry, we find a spectral type of K4 for the secondary star in the system, which is consistent with spectroscopic observations. We present J-, H-, and K-band light curves modeled with WD98 and ELC. Combining detailed, independently run models for ellipsoidal variations due to a spotted, non-spherical secondary star, and the observed ultraviolet to infrared spectral energy distribution of the system, we show that the most likely value for the orbital inclination is 40.75 +/- 3 deg. This inclination angle implies a primary black hole mass of 11.0 +/- 1.9 solar masses.Comment: 29 pages (preprint format), including 7 figures and 4 tables, accepted for publication in the Nov 2001 issue of A

    Orbital Parameters for the Black Hole Binary XTE J1650-500

    Full text link
    (Shortened) We present R-band photometry of the X-ray transient and candidate black hole binary XTE J1650-500 obtained between 2003 May and August with the 6.5m Clay Telescope. A timing analysis of these data reveals a photometric period of 0.3205 +/- 0.0007 days (i.e. 7.63 hr) with a possible alias at 0.3785 days (9.12 hr). Our photometry completely rules out the previously published spectroscopic period of 0.212 days (5.09 hr). Consequently, we reanalyzed the 15 archival ESO/VLT spectra (obtained 2002 June by Sanchez-Fernandez et al.) that were the basis of the previously published spectroscopic period. We used a ``restframe search'' technique that is well suited for cases when the signal-to-noise ratio of individual spectra is low. The results confirmed the photometric period of 0.3205 days, and rule out the alias period near 0.38 days. The best value for the velocity semiamplitude of the companion star is K_2 = 435 +/- 30 km/sec, and the corresponding optical mass function is f(M) = 2.73 +/- 0.56 solar masses. The amplitude of the phased R-band light curve is 0.2 magnitudes, which gives a lower limit to the inclination of 50 +/- 3 degrees in the limiting case of no contribution to the R-band light curve from the accretion disk. If the mass ratio of XTE J1650-500 is similar to the mass ratios of other black hole binaries like A0620-00 or GRS 1124-683 (e.g. Q >~ 10), then our lower limit to the inclination gives an upper limit to the mass of the black hole in XTE J1650-500 of M_1 <~ 7.3 solar masses. However, the mass can be considerably lower if the R-band flux is dominated by the accretion disk. For example, if the accretion disk does contribute 80% of the flux, as our preliminary results suggest, then the black hole mass would be only about 4 solar masses.Comment: Accepted to ApJ. 15 pages, 5 figures (two of degraded quality). Revised after referee's Comments, conclusions are unchange

    RXTE Spectral Observations of the 1996-97 Outburst of the Microquasar GRO J1655-40

    Get PDF
    Excellent coverage of the entire 16-month 1996-97 outburst cycle of GRO J1655-40 was provided by RXTE. We present a full spectral analysis of these data, which includes 52 PCA spectra from 2.5-20 keV and HEXTE spectra above 20 keV. We also include a nearly continuous ASM light curve with several intensity measurements per day. The data are interpreted in the context of the multicolor blackbody disk/power-law model. The source is observed in the very high, high/soft, and low/hard outburst states. During the very high state, the source exhibits intense hard flares on time scales of hours to days which are correlated with changes in both the fitted temperature and radius of the inner accretion disk. During the high/soft state, the spectrum is dominated by the soft thermal emission from the accretion disk with spectral parameters that suggest approximately constant inner disk radius and temperature. We find that a tight relationship exists between the observed inner radius of the disk and the flux in the power-law component. During intense hard flares, the inner disk radius is observed to decrease by as much as a factor of three on a time scale of days. The apparent decrease of the inner disk radius observed during the flares may be due to the failure of the multicolor disk model caused by a steepening of the radial temperature profile in the disk coupled with increased spectral hardening and not physical changes of the inner disk radius. Assuming that our spectral model is valid during periods of weak power-law emission, our most likely value for the inner disk radius implies a* < 0.7. Such a low value for the black hole angular momentum is inconsistent with the relativistic frame dragging and the `diskoseismic' models as interpretations for the 300 Hz X-ray QPO seen during some of these RXTE observations.Comment: 34 pages including 9 figures and 3 tables. Accepted for publication in the Astrophysical Journal. Our interpretation of the data and the main conclusions have been significantly revise

    The Influence of Specimen Thickness on the High Temperature Corrosion Behavior of CMSX-4 during Thermal-Cycling Exposure

    Get PDF
    CMSX-4 is a single-crystalline Ni-base superalloy designed to be used at very high temperatures and high mechanical loadings. Its excellent corrosion resistance is due to external alumina-scale formation, which however can become less protective under thermal-cycling conditions. The metallic substrate in combination with its superficial oxide scale has to be considered as a composite suffering high stresses. Factors like different coefficients of thermal expansion between oxide and substrate during temperature changes or growing stresses affect the integrity of the oxide scale. This must also be strongly influenced by the thickness of the oxide scale and the substrate as well as the ability to relief such stresses, e.g., by creep deformation. In order to quantify these effects, thin-walled specimens of different thickness (t = 100500 lm) were prepared. Discontinuous measurements of their mass changes were carried out under thermal-cycling conditions at a hot dwell temperature of 1100 C up to 300 thermal cycles. Thin-walled specimens revealed a much lower oxide-spallation rate compared to thick-walled specimens, while thinwalled specimens might show a premature depletion of scale-forming elements. In order to determine which of these competetive factor is more detrimental in terms of a component’s lifetime, the degradation by internal precipitation was studied using scanning electron microscopy (SEM) in combination with energy-dispersive X-ray spectroscopy (EDS). Additionally, a recently developed statistical spallation model was applied to experimental data [D. Poquillon and D. Monceau, Oxidation of Metals, 59, 409–431 (2003)]. The model describes the overall mass change by oxide scale spallation during thermal cycling exposure and is a useful simulation tool for oxide scale spallation processes accounting for variations in the specimen geometry. The evolution of the net-mass change vs. the number of thermal cycles seems to be strongly dependent on the sample thickness
    • …
    corecore