4,481 research outputs found

    A non-linear transport method for detecting superconducting stripes

    Full text link
    We theoretically study the effect of stripe-like superconducting inclusions on the non-linear resistivity in single crystals. Even when the stripe orientation varies throughout the sample between two orthogonal directions due to twinning, we predict that there should be a universal scaling relationship between the nonlinear resistivity curves measured at different angles relative to the crystal axes. This prediction can be used to verify or rule out the existence of superconducting stripes at and above the superconducting transition temperature in cuprate superconductors.Comment: 4 pages, 4 figure

    A Green function method to study thin diffraction gratings

    Full text link
    The anomalous features in diffraction patterns first observed by Wood over a century ago have been the subject of many investigations, both experimental and theoretical. The sharp, narrow structures - and the large resonances with which they are sometimes associated - arise in numerous studies in optics and photonics. In this paper we present an analytical method to study diffracted fields of optically thin gratings that highlights the nonanalyticities associated with the anomalies. Using this approach we can immediately derive diffracted fields for any polarization in a compact notation. While our equations are approximate, they fully respect energy conservation in the electromagnetic field, and describe the large exchanges of energy between incident and diffracted fields that can arise even for thin gratings.Comment: 19 pages, 8 figure

    Clocked Atom Delivery to a Photonic Crystal Waveguide

    Get PDF
    Experiments and numerical simulations are described that develop quantitative understanding of atomic motion near the surfaces of nanoscopic photonic crystal waveguides (PCWs). Ultracold atoms are delivered from a moving optical lattice into the PCW. Synchronous with the moving lattice, transmission spectra for a guided-mode probe field are recorded as functions of lattice transport time and frequency detuning of the probe beam. By way of measurements such as these, we have been able to validate quantitatively our numerical simulations, which are based upon detailed understanding of atomic trajectories that pass around and through nanoscopic regions of the PCW under the influence of optical and surface forces. The resolution for mapping atomic motion is roughly 50 nm in space and 100 ns in time. By introducing auxiliary guided mode (GM) fields that provide spatially varying AC-Stark shifts, we have, to some degree, begun to control atomic trajectories, such as to enhance the flux into to the central vacuum gap of the PCW at predetermined times and with known AC-Stark shifts. Applications of these capabilities include enabling high fractional filling of optical trap sites within PCWs, calibration of optical fields within PCWs, and utilization of the time-dependent, optically dense atomic medium for novel nonlinear optical experiments
    • …
    corecore