1,558 research outputs found
siRNA knockdown of SPHK1 in vivo protects mice from systemic, type-I Allergy.
Systemic anaphylaxis is considered to be a typical immediate hypersensitivity response, determined by the activation of immune cells,
via antigen-induced aggregation of IgE-sensitized FcεRI cells. Perhaps most the important cells, in the immediate hypersensitivity responses, are mast cells. We have previously shown that SPHK1 plays a key role in the intracellular signaling pathways triggered by FceRI aggregation on human
mast cells. More recently, we performed a genome-wide gene expression profiling of human mast cells, sensitized with IgE alone, or stimulated by FcεRI aggregation. We found that sphingosine kinase 1 (SPHK1) was one
of genes activated at the earlier stages of mast cell activation, including during sensitization. Moreover, SPHK1 has been shown, by us and others, to be a key player in the intracellular signaling pathways triggered by
several immune-receptors, including fMLP, C5a, and Fcg- and Fcereceptors. Here we have investigated the in vivo role of SPHK1 in allergy, using a specific siRNA to knockdown SPHK1 in vivo. Our results support a role for
SPHK1 in the inflammatory responses that share clinical, immunological, and histological features of type I hypersensitivity. Thus, mice pretreated with the siRNA for SPHK1 were protected from the IgE mediated allergic
reactions including: temperature changes, histamine release, cytokine production, cell-adhesion molecule expression, and immune cell infiltration into the lungs
Temperature dependent charge transport mechanisms in carbon sphere/polymer composites
Carbon spheres (CS) with diameters in the range were prepared
via hydrolysis of a sucrose solution at and later annealed in
at The spheres were highly conducting but difficult to process into
thin films or pressed pellets. In our previous work, composite samples of CS
and the insulating polymer polyethylene oxide (PEO) were prepared and their
charge transport was analyzed in the temperature range
Here, we analyze charge transport in CS coated with a thin polyaniline (PANi)
film doped with hydrochloric acid (HCl), in the same temperature range. The
goal is to study charge transport in the CS using a conducting polymer (PANi)
as a binder and compare with that occurring at CS/PEO. A conductivity maxima
was observed in the CS/PEO composite but was absent in CS/PANi. Our data
analysis shows that variable range hopping of electrons between polymeric
chains in PANi-filled gaps between CS takes on a predominant part in transport
through CS/PANi composites, whereas in CS/PEO composites, electrons travel
through gaps between CS solely by means of direct tunneling. This difference in
transport mechanisms results in different temperature dependences of the
conductivity.Comment: 7 pages, 6 figure
BUQEYE Guide to Projection-Based Emulators in Nuclear Physics
The BUQEYE collaboration (Bayesian Uncertainty Quantification: Errors in Your
EFT) presents a pedagogical introduction to projection-based, reduced-order
emulators for applications in low-energy nuclear physics. The term emulator
refers here to a fast surrogate model capable of reliably approximating
high-fidelity models. As the general tools employed by these emulators are not
yet well-known in the nuclear physics community, we discuss variational and
Galerkin projection methods, emphasize the benefits of offline-online
decompositions, and explore how these concepts lead to emulators for bound and
scattering systems that enable fast & accurate calculations using many
different model parameter sets. We also point to future extensions and
applications of these emulators for nuclear physics, guided by the mature field
of model (order) reduction. All examples discussed here and more are available
as interactive, open-source Python code so that practitioners can readily adapt
projection-based emulators for their own work.Comment: 31 pages, 10 figures, 1 table; invited contribution to the Research
Topic "Uncertainty Quantification in Nuclear Physics" in Frontiers in Physic
Wave function-based emulation for nucleon-nucleon scattering in momentum space
Emulators for low-energy nuclear physics can provide fast & accurate
predictions of bound-state and scattering observables for applications that
require repeated calculations with different parameters, such as Bayesian
uncertainty quantification. In this paper, we extend a scattering emulator
based on the Kohn variational principle (KVP) to momentum space (including
coupled channels) with arbitrary boundary conditions, which enable the
mitigation of spurious singularities known as Kohn anomalies. We test it on a
modern chiral nucleon-nucleon (NN) interaction, including emulation of the
coupled channels. We provide comparisons between a Lippmann-Schwinger equation
emulator and our KVP momentum-space emulator for a representative set of
neutron-proton (np) scattering observables, and also introduce a
quasi-spline-based approach for the KVP-based emulator. Our findings show that
while there are some trade-offs between accuracy and speed, all three emulators
perform well. Self-contained Jupyter notebooks that generate the results and
figures in this paper are publicly available.Comment: 18 pages, 15 figure
Quasar Feedback in the Ultraluminous Infrared Galaxy F11119+3257: Connecting the Accretion Disk Wind with the Large-Scale Molecular Outflow
In Tombesi et al. (2015), we reported the first direct evidence for a quasar
accretion disk wind driving a massive molecular outflow. The target was
F11119+3257, an ultraluminous infrared galaxy (ULIRG) with unambiguous type-1
quasar optical broad emission lines. The energetics of the accretion disk wind
and molecular outflow were found to be consistent with the predictions of
quasar feedback models where the molecular outflow is driven by a hot
energy-conserving bubble inflated by the inner quasar accretion disk wind.
However, this conclusion was uncertain because the energetics were estimated
from the optically thick OH 119 um transition profile observed with Herschel.
Here, we independently confirm the presence of the molecular outflow in
F11119+3257, based on the detection of broad wings in the CO(1-0) profile
derived from ALMA observations. The broad CO(1-0) line emission appears to be
spatially extended on a scale of at least ~7 kpc from the center. Mass outflow
rate, momentum flux, and mechanical power of (80-200) R_7^{-1} M_sun/yr,
(1.5-3.0) R_7^{-1} L_AGN/c, and (0.15-0.40)% R_7^{-1} L_AGN are inferred from
these data, assuming a CO-to-H_2 conversion factor appropriate for a ULIRG (R_7
is the radius of the outflow normalized to 7 kpc and L_AGN is the AGN
luminosity). These rates are time-averaged over a flow time scale of 7x10^6
yrs. They are similar to the OH-based rates time-averaged over a flow time
scale of 4x10^5 yrs, but about a factor 4 smaller than the local
("instantaneous"; <10^5 yrs) OH-based estimates cited in Tombesi et al. The
implications of these new results are discussed in the context of time-variable
quasar-mode feedback and galaxy evolution. The need for an energy-conserving
bubble to explain the molecular outflow is also re-examined.Comment: 15 pages, 6 figures, 4 tables, accepted for publication in Ap
The influence of electron collisions on non-LTE Li line formation in stellar atmospheres
The influence of the uncertainties in the rate coefficient data for
electron-impact excitation and ionization on non-LTE Li line formation in cool
stellar atmospheres is investigated. We examine the electron collision data
used in previous non-LTE calculations and compare them to recent calculations
that use convergent close-coupling (CCC) techniques and to our own calculations
using the R-matrix with pseudostates (RMPS) method. We find excellent agreement
between rate coefficients from the CCC and RMPS calculations, and reasonable
agreement between these data and the semi-empirical data used in non-LTE
calculations up to now. The results of non-LTE calculations using the old and
new data sets are compared and only small differences found: about 0.01 dex (~
2%) or less in the abundance corrections. We therefore conclude that the
influence on non-LTE calculations of uncertainties in the electron collision
data is negligible. Indeed, together with the collision data for the charge
exchange process Li(3s) + H Li^+ + H^- now available, and barring the
existence of an unknown important collisional process, the collisional data in
general is not a source of significant uncertainty in non-LTE Li line formation
calculations.Comment: 8 pages, accepted by Astronomy and Astrophysics; Replaced with minor
corrections following proof
The dissimilar chemical composition of the planet-hosting stars of the XO-2 binary system
Using high-quality spectra of the twin stars in the XO-2 binary system, we
have detected significant differences in the chemical composition of their
photospheres. The differences correlate strongly with the elements' dust
condensation temperature. In XO-2N, volatiles are enhanced by about 0.015 dex
and refractories are overabundant by up to 0.090 dex. On average, our error bar
in relative abundance is 0.012 dex. We present an early metal-depletion
scenario in which the formation of the gas giant planets known to exist around
these stars is responsible for a 0.015 dex offset in the abundances of all
elements while 20 M_Earth of non-detected rocky objects that formed around
XO-2S explain the additional refractory-element difference. An alternative
explanation involves the late accretion of at least 20 M_Earth of planet-like
material by XO-2N, allegedly as a result of the migration of the hot Jupiter
detected around that star. Dust cleansing by a nearby hot star as well as age
or Galactic birthplace effects can be ruled out as valid explanations for this
phenomenon.Comment: ApJ, in press. Complete linelist (Table 3) available in the "Other
formats -> Source" downloa
The Solar Twin Planet Search II. A Jupiter twin around a solar twin
Through our HARPS radial velocity survey for planets around solar twin stars,
we have identified a promising Jupiter twin candidate around the star HIP11915.
We characterize this Keplerian signal and investigate its potential origins in
stellar activity. Our analysis indicates that HIP11915 hosts a Jupiter-mass
planet with a 3800-day orbital period and low eccentricity. Although we cannot
definitively rule out an activity cycle interpretation, we find that a planet
interpretation is more likely based on a joint analysis of RV and activity
index data. The challenges of long-period radial velocity signals addressed in
this paper are critical for the ongoing discovery of Jupiter-like exoplanets.
If planetary in nature, the signal investigated here represents a very close
analog to the solar system in terms of both Sun-like host star and Jupiter-like
planet.Comment: 8 pages, 5 figures; A&A accepted; typos corrected in this versio
- …