1,359 research outputs found
Simulation of transient energy distributions in sub-ns streamer formation
Breakdown and streamer formation is simulated in atmospheric pressure nitrogen for a 2D planar electrode system. A PIC code with multigrid potential solver is used to simulate the evolution of the non-equilibrium ionization front on sub-nanosecond timescales. The ion and electron energy distributions are computed, accounting for the inclusion of inelastic scattering of electrons, and collisionally excited metastable production and ionization. Of particular interest is the increased production of metastable and low-energy ions and electrons when the applied field is reversed during the progress of the ionization front, giving insight into the improved species yields in nanosecond pulsed systems
Cylindrical, periodic surface lattice — theory, dispersion analysis, and experiment
A two-dimensional surface lattice of cylindrical topology obtained via perturbing the inner surface of a cylinder is considered. Periodic perturbations of the surface lead to observation of high-impedance, dielectric-like media and resonant coupling of surface and non-propagating volume fields. This allows synthesis of tailored-for-purpose "coating" material with dispersion suitable, for instance, to mediate a Cherenkov type interaction. An analytical model of the lattice is discussed and coupled-wave equations are derived. Variations of the lattice dispersive properties with variation of parameters are shown, illustrating the tailoring of the structure's electromagnetic properties. Experimental results are presented showing agreement with the theoretical model
Recommended from our members
Distinction between difference and differential equations of motion for synchrotron motion
The meticulous development of the differential equations of motion (EOM) and related analysis for synchrotron oscillation has extended over decades [see, for example, references [1], [2], and [3]], but the parallel treatment of the difference equations (turn-by-turn mapping) is less developed. The author has written the difference equations for the mapping[4], that is to say the difference equation EOM, but has not carried the fundamental development much further. A companion paper[5] is an effort to reconcile difference EOM and differential EOM. Practically one finds that both techniques generally give the same numerical solution when applied to precisely the same physical system. However, it is incorrect to assume that the two methods are mathematically equivalent; there are circumstances in which the distinction between them is material. This note develops the commonality of the two formalisms
Seasonal variation and impact of waste-water lagoons as larval habitat on the population dynamics of Culicoides sonorensis (Diptera:Ceratpogonidae) at two dairy farms in northern California.
The Sacramento (northern Central) Valley of California (CA) has a hot Mediterranean climate and a diverse ecological landscape that is impacted extensively by human activities, which include the intensive farming of crops and livestock. Waste-water ponds, marshes, and irrigated fields associated with these agricultural activities provide abundant larval habitats for C. sonorensis midges, in addition to those sites that exist in the natural environment. Within this region, C. sonorensis is an important vector of bluetongue (BTV) and related viruses that adversely affect the international trade and movement of livestock, the economics of livestock production, and animal welfare. To characterize the seasonal dynamics of immature and adult C. sonorensis populations, abundance was monitored intensively on two dairy farms in the Sacramento Valley from August 2012- to July 2013. Adults were sampled every two weeks for 52 weeks by trapping (CDC style traps without light and baited with dry-ice) along N-S and E-W transects on each farm. One farm had large operational waste-water lagoons, whereas the lagoon on the other farm was drained and remained dry during the study. Spring emergence and seasonal abundance of adult C. sonorensis on both farms coincided with rising vernal temperature. Paradoxically, the abundance of midges on the farm without a functioning waste-water lagoon was increased as compared to abundance on the farm with a waste-water lagoon system, indicating that this infrastructure may not serve as the sole, or even the primary larval habitat. Adult midges disappeared from both farms from late November until May; however, low numbers of parous female midges were detected in traps set during daylight in the inter-seasonal winter period. This latter finding is especially critical as it provides a potential mechanism for the "overwintering" of BTV in temperate regions such as northern CA. Precise documentation of temporal changes in the annual abundance and dispersal of Culicoides midges is essential for the creation of models to predict BTV infection of livestock and to develop sound abatement strategies
- …