9,329 research outputs found

    Coulomb displacement energies, energy differenced and neutron skins

    Get PDF
    A Fock space representation of the monopole part of the Coulomb potential is presented. Quantum effects show through a small orbital term in l(l+1)l(l+1). Once it is averaged out, the classical electrostatic energy emerges as an essentially exact expression, which makes it possible to eliminate the Nolen-Schiffer anomaly, and to estimate neutron skins and the evolution of radii along yrast states of mirror nuclei. The energy differences of the latter are quantitatively reproduced by the monopole term and a schematic multipole one.Comment: 4 pages, 3 figures, Revte

    Excitation of the GDR and the Compressional Isoscalar Dipole State by alpha scattering

    Full text link
    The excitation of the isovector giant dipole resonance (GDR) by alpha scattering is investigated as a method of probing the neutron excess in exotic nuclei. DWBA calculations are presented for 28O and 70Ca and the interplay of Coulomb and nuclear excitation is discussed. Since the magnitude of the Coulomb excitation amplitude is strongly influenced by the Q-value, the neutron excess plays an important role, as it tends to lower the energy of the GDR. The excitation of the compressional isoscalar dipole state in 70Ca by alpha scattering is also investigated. It is shown that the population of this latter state may be an even more sensitive probe of the neutron skin than the isovector GDR.Comment: 7 pages, 5 figures, Latex2

    Isobaric multiplet yrast energies and isospin non-conserving forces

    Get PDF
    The isovector and isotensor energy differences between yrast states of isobaric multiplets in the lower half of the pfpf region are quantitatively reproduced in a shell model context. The isospin non-conserving nuclear interactions are found to be at least as important as the Coulomb potential. Their isovector and isotensor channels are dominated by J=2 and J=0 pairing terms, respectively. The results are sensitive to the radii of the states, whose evolution along the yrast band can be accurately followed.Comment: 4 pages, 4 figures. Superseeds second part of nucl-th/010404

    Microscopic cluster model for the description of (18O,16O) two-neutron transfer reactions

    Get PDF
    Excitation energy spectra and absolute cross-section angular distributions were measured for the 13C(18O,16O)15C two-neutron transfer reaction at 84 MeV incident energy. Exact finite-range coupled reaction channel calculations are used to analyse the data considering both the direct two-neutron transfer and the two-step sequential mechanism. For the direct calculations, two approaches are discussed: The extreme cluster and the newly introduced microscopic cluster. The latter makes use of spectroscopic amplitudes in the centre-of-mass reference frame, derived from shell-model calculations. The results describe well the experimental cross sections

    Microscopic cluster model for the description of new experimental results on the C 13 (O 18, O 16) C 15 two-neutron transfer at 84 MeV incident energy

    Get PDF
    The C13(O18,O16)C15 reaction is studied at 84 MeV incident energy. Excitation energy spectra and absolute cross-section angular distributions for the strongest transitions are measured with good energy and angular resolutions. Strong selectivity for two-neutron configurations in the states of the residual nucleus is found. The measured cross-section angular distributions are analyzed by exact finite-range coupled reaction channel calculations. The two-particle wave functions are extracted using the extreme cluster and the independent coordinate scheme with shell-model derived coupling strengths. A new approach also is introduced, the microscopic cluster, in which the spectroscopic amplitudes in the center-of-mass reference frame are derived from shell-model calculations using the Moshinsky transformation brackets. This new model is able to describe well the experimental cross section and to highlight cluster configurations in the involved wave functions

    Band termination in the N=Z Odd-Odd Nucleus 46V

    Full text link
    High spin states in the odd-odd N=Z nucleus 46V have been identified. At low spin, the T=1 isobaric analogue states of 46Ti are established up to I = 6+. Other high spin states, including the band terminating state, are tentatively assigned to the same T=1 band. The T=0 band built on the low-lying 3+ isomer is observed up to the 1f7/2-shell termination at I=15. Both signatures of a negative parity T=0 band are observed up to the terminating states at I = 16- and I = 17-, respectively. The structure of this band is interpreted as a particle-hole excitation from the 1d3/2 shell. Spherical shell model calculations are found to be in excellent agreement with the experimental results.Comment: 5 pages, 4 figure

    In vivo kinetics of eosinophils and mast cells in experimental murine Schistosomiasis

    Full text link
    During the schistosomiasis infection there is a [quot ]dance of the cells[quot ], varying from site to site and related to the time of infection. 1 - Eosinophil levels exhibit a bimodal pattern, with the first peak related to the egg deposition and maturation and increased Kupfferian hyperplasia; the second peak precedes the death of some adult worms; 2 - The peritoneal eosinophilic levels are inversely proportional to the blood eosinophilic levels; 3 - Eosinopoiesis in the bone marrow begins at day 40, reaching the highest levels at day 50 and coincides with hepatic eosinophilic and neutrophilic metaplasia; 4 - Peritoneal mast cell levels present a bimodal pattern similar to the blood eosinophils, and inverse to the peritoneal eosinophils. They also show a cyclic behaviour within the hepatic and intestinal granulomas. Integral analysis of the events related to the eosinophils in the blood, bone marrow, peritoneal cavity and hepatic and intestinal granulomas allows the detection of two important eosinophilic phases: the first is due to mobilization and redistribution of the marginal pool and the second originates from eosinophilic production in the bone marrow and liver. The productive phase is characterized by an increase in the number of eosinophils and monocyte/macrophages, and a decrease in neutrophils and stabilization of megakariocytes and erithroid lineages

    Excited States in 52Fe and the Origin of the Yrast Trap at I=12+

    Full text link
    Excited states in 52Fe have been determined up to spin 10\hbar in the reaction 28Si + 28Si at 115 MeV by using \gamma-ray spectroscopy methods at the GASP array. The excitation energy of the yrast 10+ state has been determined to be 7.381 MeV, almost 0.5 MeV above the well known \beta+-decaying yrast 12+ state, definitely confirming the nature of its isomeric character. The mean lifetimes of the states have been measured by using the Doppler Shift Attenuation method. The experimental data are compared with spherical shell model calculations in the full pf-shell.Comment: 9 pages, RevTeX, 7 figures include
    corecore