288 research outputs found
Misty, Spellbound and the lost Gothic of British girlsâ comics.
This article is a case study of the 1970s British girlsâ comics Spellbound (DC Thomson, 1976â1977) and Misty (IPC, 1978â1980). These mystery anthology comics followed the more famous American horror comics from publishers like EC Comics - but were aimed at pre-teen girls. The article situates these comics with respect to Gothic critical theory and within the wider landscape of British girlsâ comics. Firstly, it closely considers and compares the structure and content of their stories with respect to theories of the terror and horror Gothic. It discovers that both comics offer similar fare, with a subversive streak that undercuts established horror archetypes. The article then looks closely at both titlesâ aesthetics and their use of the page to draw comparisons. It uses comics theory and Gothic cinematic theory to demonstrate that the appearance of Misty is more strongly Gothic than the aesthetic of Spellbound. Finally, it considers a selection of stories from both comics and analyses their common themes using Gothic critical theory. It argues that both comics rework Gothic themes into new forms that are relevant to their pre-teen and teenage readers. It concludes by summarising the studyâs findings and suggesting that these comics offer a âGothic for Girlsâ that is part cautionary tale and part bildungsroman. This article is published as part of a collection on Gothic and horror
Production of antigenically stable enterovirus A71 virus-like particles in Pichia pastoris as a vaccine candidate.
Enterovirus A71 (EVA71) causes widespread disease in young children with occasional fatal consequences. In common with other picornaviruses, both empty capsids (ECs) and infectious virions are produced during the viral lifecycle. While initially antigenically indistinguishable from virions, ECs readily convert to an expanded conformation at moderate temperatures. In the closely related poliovirus, these conformational changes result in loss of antigenic sites required to elicit protective immune responses. Whether this is true for EVA71 remains to be determined and is the subject of this investigation.We previously reported the selection of a thermally resistant EVA71 genogroup B2 population using successive rounds of heating and passage. The mutations found in the structural protein-coding region of the selected population conferred increased thermal stability to both virions and naturally produced ECs. Here, we introduced these mutations into a recombinant expression system to produce stabilized virus-like particles (VLPs) in Pichia pastoris.The stabilized VLPs retain the native virion-like antigenic conformation as determined by reactivity with a specific antibody. Structural studies suggest multiple potential mechanisms of antigenic stabilization, however, unlike poliovirus, both native and expanded EVA71 particles elicited antibodies able to directly neutralize virus in vitro. Therefore, anti-EVA71 neutralizing antibodies are elicited by sites which are not canonically associated with the native conformation, but whether antigenic sites specific to the native conformation provide additional protective responses in vivo remains unclear. VLPs are likely to provide cheaper and safer alternatives for vaccine production and these data show that VLP vaccines are comparable with inactivated virus vaccines at inducing neutralising antibodies
Ugandaâs HIV Prevention Success: The Role of Sexual Behavior Change and the National Response. Commentary on Green et al. (2006)
The paper by Green et al. (vol. 10, this issue
Direct Evidence for Packaging Signal-Mediated Assembly of Bacteriophage MS2
Using cross-linking coupled to matrix-assisted laser desorption/ionization mass spectrometry and CLIP-Seq sequencing, we determined the peptide and oligonucleotide sequences at the interfaces between the capsid proteins and the genomic RNA of bacteriophage MS2. The results suggest that the same coat protein (CP)-RNA and maturation protein (MP)-RNA interfaces are used in every viral particle. The portions of the viral RNA in contact with CP subunits span the genome, consistent with a large number of discrete and similar contacts within each particle. Many of these sites match previous predictions of the locations of multiple, dispersed and degenerate RNA sites with cognate CP affinity termed packaging signals (PSs). Chemical RNA footprinting was used to compare the secondary structures of protein-free genomic fragments and the RNA in the virion. Some PSs are partially present in protein-free RNA but others would need to refold from their dominant solution conformations to form the contacts identified in the virion. The RNA-binding peptides within the MP map to two sections of the N-terminal half of the protein. Comparison of MP sequences from related phages suggests a similar arrangement of RNA-binding sites, although these N-terminal regions have only limited sequence conservation. In contrast, the sequences of the C-termini are highly conserved, consistent with them encompassing pilin-binding domains required for initial contact with host cells. These results provide independent and unambiguous support for the assembly of MS2 virions via a PS-mediated mechanism involving a series of induced-fit viral protein interactions with RNA
Insights into Minor Group Rhinovirus Uncoating: The X-ray Structure of the HRV2 Empty Capsid
Upon attachment to their respective receptor, human rhinoviruses (HRVs) are internalized into the host cell via different pathways but undergo similar structural changes. This ultimately results in the delivery of the viral RNA into the cytoplasm for replication. To improve our understanding of the conformational modifications associated with the release of the viral genome, we have determined the X-ray structure at 3.0 Ă
resolution of the end-stage of HRV2 uncoating, the empty capsid. The structure shows important conformational changes in the capsid protomer. In particular, a hinge movement around the hydrophobic pocket of VP1 allows a coordinated shift of VP2 and VP3. This overall displacement forces a reorganization of the inter-protomer interfaces, resulting in a particle expansion and in the opening of new channels in the capsid core. These new breaches in the capsid, opening one at the base of the canyon and the second at the particle two-fold axes, might act as gates for the externalization of the VP1 N-terminus and the extrusion of the viral RNA, respectively. The structural comparison between native and empty HRV2 particles unveils a number of pH-sensitive amino acid residues, conserved in rhinoviruses, which participate in the structural rearrangements involved in the uncoating process
Uganda's HIV Prevention Success: The Role of Sexual Behavior Change and the National Response
There has been considerable interest in understanding what may have led to Uganda's dramatic decline in HIV prevalence, one of the world's earliest and most compelling AIDS prevention successes. Survey and other data suggest that a decline in multi-partner sexual behavior is the behavioral change most likely associated with HIV decline. It appears that behavior change programs, particularly involving extensive promotion of âzero grazingâ (faithfulness and partner reduction), largely developed by the Ugandan government and local NGOs including faith-based, womenâs, people-living-with-AIDS and other community-based groups, contributed to the early declines in casual/multiple sexual partnerships and HIV incidence and, along with other factors including condom use, to the subsequent sharp decline in HIV prevalence. Yet the debate over âwhat happened in Ugandaâ continues, often involving divisive abstinence-versus-condoms rhetoric, which appears more related to the culture wars in the USA than to African social reality
Recommended from our members
Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen
Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals
- âŠ