861 research outputs found

    2004 Trademark Law Decisions of the Federal Circuit

    Get PDF

    Narrow Optical and Spin Linewidths in Rare-earth Doped Micro- and Nano-structures

    Get PDF
    This invited presentation was given at the 47th conference on the Physics of Quantum Electronics, which took place in Snowbird, USA from January 8 to 13, 2017. It gives an overview of the current developments on rare earth doped nanoparticles and transparent ceramics spectroscopy at Chimie ParisTech

    Inappropriate Implantable Cardioverter-Defibrillator Shocks Attributed to Alternating-Current Leak in a Swimming Pool

    Get PDF
    Implantable cardioverter-defibrillators (ICDs) are the standard of care for preventing sudden cardiac death in patients who are predisposed to malignant ventricular arrhythmias. Causes of inappropriate ICD shock include equipment malfunction, improper arrhythmia evaluation, misinterpretation of myopotentials, and electromagnetic interference. As the number of implanted ICDs has increased, other contributors to inappropriate therapy have become known, such as minimal electrical current leaks that mimic ventricular fibrillation. We present the case of a 63-year-old man with a biventricular ICD who received 2 inappropriate shocks, probably attributable to alternating-current leaks in a swimming pool. In addition, we discuss ICD sensitivity and offer recommendations to avoid similar occurrences

    Red and orange laser operation of Pr:KYF4 pumped by a Nd:YAG/LBO laser at 469.1nm and a InGaN laser diode at 444nm

    Get PDF
    We report the basic luminescence properties and the continuous-wave (CW) laser operation of a Pr3+-doped KYF4 single crystal in the Red and Orange spectral regions by using a new pumping scheme. The pump source is an especially developed, compact, slightly tunable and intra-cavity frequency-doubled diode-pumped Nd:YAG laser delivering a CW output power up to about 1.4 W around 469.1 nm. At this pump wavelength, red and orange laser emissions are obtained at about 642.3 and 605.5 nm, with maximum output powers of 11.3 and 1 mW and associated slope efficiencies of 9.3% and 3.4%, with respect to absorbed pump powers, respectively. For comparison, the Pr:KYF4 crystal is also pumped by a InGaN blue laser diode operating around 444 nm. In this case, the same red and orange lasers are obtained, but with maximum output powers of 7.8 and 2 mW and the associated slope efficiencies of 7 and 5.8%, respectively. Wavelength tuning for the two lasers is demonstrated by slightly tilting the crystal. Orange laser operation and laser wavelength tuning are reported for the first time

    All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region

    Get PDF
    All-solid-state electrochromic reflectance devices for thermal emittance modulation were designed for operation in the spectral region from mid- to far-infrared wavelengths (2–40 μm). All device constituent layers were grown by magnetron sputtering. The electrochromic (polycrystalline WO3), ion conductor (Ta2O5), and Li+ ion-storage layer (amorphous WO3), optimized for their infrared (IR) optical thicknesses, are sandwiched between a highly IR reflecting Al mirror, and a 90% IR transmissive Al grid top electrode, thereby meeting the requirements for a reversible Li+ ion insertion electrochromic device to operate within the 300 K blackbody emission range. Multicycle optical switching and emittance modulation is demonstrated. The measured change in emissivity of the device is to 20%

    On stability of the three-dimensional fixed point in a model with three coupling constants from the ϵ\epsilon expansion: Three-loop results

    Full text link
    The structure of the renormalization-group flows in a model with three quartic coupling constants is studied within the ϵ\epsilon-expansion method up to three-loop order. Twofold degeneracy of the eigenvalue exponents for the three-dimensionally stable fixed point is observed and the possibility for powers in ϵ\sqrt{\epsilon} to appear in the series is investigated. Reliability and effectiveness of the ϵ\epsilon-expansion method for the given model is discussed.Comment: 14 pages, LaTeX, no figures. To be published in Phys. Rev. B, V.57 (1998

    Equation of State for Helium-4 from Microphysics

    Full text link
    We compute the free energy of helium-4 near the lambda transition based on an exact renormalization-group equation. An approximate solution permits the determination of universal and nonuniversal thermodynamic properties starting from the microphysics of the two-particle interactions. The method does not suffer from infrared divergences. The critical chemical potential agrees with experiment. This supports a specific formulation of the functional integral that we have proposed recently. Our results for the equation of state reproduce the observed qualitative behavior. Despite certain quantitative shortcomings of our approximation, this demonstrates that ab initio calculations for collective phenomena become possible by modern renormalization-group methods.Comment: 9 pages, 6 figures, revtex updated version, journal referenc
    • …
    corecore