7,323 research outputs found
Mean-field dynamical density functional theory
We examine the out-of-equilibrium dynamical evolution of density profiles of
ultrasoft particles under time-varying external confining potentials in three
spatial dimensions. The theoretical formalism employed is the dynamical density
functional theory (DDFT) of Marini Bettolo Marconi and Tarazona [J. Chem. Phys.
{\bf 110}, 8032 (1999)], supplied by an equilibrium excess free energy
functional that is essentially exact. We complement our theoretical analysis by
carrying out extensive Brownian Dynamics simulations. We find excellent
agreement between theory and simulations for the whole time evolution of
density profiles, demonstrating thereby the validity of the DDFT when an
accurate equilibrium free energy functional is employed.Comment: 8 pagers, 4 figure
Modelling the evaporation of nanoparticle suspensions from heterogeneous surfaces
We present a Monte Carlo (MC) grid-based model for the drying of drops of a
nanoparticle suspension upon a heterogeneous surface. The model consists of a
generalised lattice-gas in which the interaction parameters in the Hamiltonian
can be varied to model different properties of the materials involved. We show
how to choose correctly the interactions, to minimise the effects of the
underlying grid so that hemispherical droplets form. We also include the
effects of surface roughness to examine the effects of contact-line pinning on
the dynamics. When there is a `lid' above the system, which prevents
evaporation, equilibrium drops form on the surface, which we use to determine
the contact angle and how it varies as the parameters of the model are changed.
This enables us to relate the interaction parameters to the materials used in
applications. The model has also been applied to drying on heterogeneous
surfaces, in particular to the case where the suspension is deposited on a
surface consisting of a pair of hydrophilic conducting metal surfaces that are
either side of a band of hydrophobic insulating polymer. This situation occurs
when using inkjet printing to manufacture electrical connections between the
metallic parts of the surface. The process is not always without problems,
since the liquid can dewet from the hydrophobic part of the surface, breaking
the bridge before the drying process is complete. The MC model reproduces the
observed dewetting, allowing the parameters to be varied so that the conditions
for the best connection can be established. We show that if the hydrophobic
portion of the surface is located at a step below the height of the
neighbouring metal, the chance of dewetting of the liquid during the drying
process is significantly reduced.Comment: 14 pages, 14 figure
Solidification in soft-core fluids: disordered solids from fast solidification fronts
Using dynamical density functional theory we calculate the speed of
solidification fronts advancing into a quenched two-dimensional model fluid of
soft-core particles. We find that solidification fronts can advance via two
different mechanisms, depending on the depth of the quench. For shallow
quenches, the front propagation is via a nonlinear mechanism. For deep
quenches, front propagation is governed by a linear mechanism and in this
regime we are able to determine the front speed via a marginal stability
analysis. We find that the density modulations generated behind the advancing
front have a characteristic scale that differs from the wavelength of the
density modulation in thermodynamic equilibrium, i.e., the spacing between the
crystal planes in an equilibrium crystal. This leads to the subsequent
development of disorder in the solids that are formed. For the one-component
fluid, the particles are able to rearrange to form a well-ordered crystal, with
few defects. However, solidification fronts in a binary mixture exhibiting
crystalline phases with square and hexagonal ordering generate solids that are
unable to rearrange after the passage of the solidification front and a
significant amount of disorder remains in the system.Comment: 18 pages, 14 fig
Structure, phase behavior and inhomogeneous fluid properties of binary dendrimer mixtures
The effective pair potentials between different kinds of dendrimers in
solution can be well approximated by appropriate Gaussian functions. We find
that in binary dendrimer mixtures the range and strength of the effective
interactions depend strongly upon the specific dendrimer architecture. We
consider two different types of dendrimer mixtures, employing the Gaussian
effective pair potentials, to determine the bulk fluid structure and phase
behavior. Using a simple mean field density functional theory (DFT) we find
good agreement between theory and simulation results for the bulk fluid
structure. Depending on the mixture, we find bulk fluid-fluid phase separation
(macro-phase separation) or micro-phase separation, i.e., a transition to a
state characterized by undamped periodic concentration fluctuations. We also
determine the inhomogeneous fluid structure for confinement in spherical
cavities. Again, we find good agreement between the DFT and simulation results.
For the dendrimer mixture exhibiting micro-phase separation, we observe rather
striking pattern formation under confinement.Comment: 8 pages, 10 figure
Development of methodologies and procedures for identifying STS users and uses
A study was conducted to identify new uses and users of the new Space Transporation System (STS) within the domestic government sector. The study develops a series of analytical techniques and well-defined functions structured as an integrated planning process to assure efficient and meaningful use of the STS. The purpose of the study is to provide NASA with the following functions: (1) to realize efficient and economic use of the STS and other NASA capabilities, (2) to identify new users and uses of the STS, (3) to contribute to organized planning activities for both current and future programs, and (4) to air in analyzing uses of NASA's overall capabilities
User benefits and funding strategies
The justification, economic and technological benefits of NASA Space Programs (aside from pure scientific objectives), in improving the quality of life in the United States is discussed and outlined. Specifically, a three-step, systematic method is described for selecting relevant and highly beneficial payloads and instruments for the Interim Upper Stage (IUS) that will be used with the space shuttle until the space tug becomes available. Viable Government and private industry cost-sharing strategies which would maximize the number of IUS payloads, and the benefits obtainable under a limited NASA budget were also determined. Charts are shown which list the payload instruments, and their relevance in contributing to such areas as earth resources management, agriculture, weather forecasting, and many others
Dynamical density functional theory for dense atomic liquids
Starting from Newton's equations of motion, we derive a dynamical density
functional theory (DDFT) applicable to atomic liquids. The theory has the
feature that it requires as input the Helmholtz free energy functional from
equilibrium density functional theory. This means that, given a reliable
equilibrium free energy functional, the correct equilibrium fluid density
profile is guaranteed. We show that when the isothermal compressibility is
small, the DDFT generates the correct value for the speed of sound in a dense
liquid. We also interpret the theory as a dynamical equation for a coarse
grained fluid density and show that the theory can be used (making further
approximations) to derive the standard mode coupling theory that is used to
describe the glass transition. The present theory should provide a useful
starting point for describing the dynamics of inhomogeneous atomic fluids.Comment: 14 pages, accepted for publication in J. Phys.: Condens. Matte
Criticality and phase separation in a two-dimensional binary colloidal fluid induced by the solvent critical behavior
We present an experimental and theoretical study of the phase behavior of a
binary mixture of colloids with opposite adsorption preferences in a critical
solvent. As a result of the attractive and repulsive critical Casimir forces,
the critical fluctuations of the solvent lead to a further critical point in
the colloidal system, i.e. to a critical colloidal-liquid--colloidal-liquid
demixing phase transition which is controlled by the solvent temperature. Our
experimental findings are in good agreement with calculations based on a simple
approximation for the free energy of the system.Comment: 5 pages, 5 figures, to be published in Europhysics Letter
Static and Dynamic Properties of Type-II Composite Fermion Wigner Crystals
The Wigner crystal of composite fermions is a strongly correlated state of
complex emergent particles, and therefore its unambiguous detection would be of
significant importance. Recent observation of optical resonances in the
vicinity of filling factor {\nu} = 1/3 has been interpreted as evidence for a
pinned Wigner crystal of composite fermions [Zhu et al., Phys. Rev. Lett. 105,
126803 (2010)]. We evaluate in a microscopic theory the shear modulus and the
magnetophonon and magnetoplasmon dispersions of the composite fermion Wigner
crystal in the vicinity of filling factors 1/3, 2/5, and 3/7. We determine the
region of stability of the crystal phase, and also relate the frequency of its
pinning mode to that of the corresponding electron crystal near integer
fillings. These results are in good semiquantitative agreement with experiment,
and therefore support the identification of the optical resonance as the
pinning mode of the composite fermions Wigner crystal. Our calculations also
bring out certain puzzling features, such as a relatively small melting
temperature for the composite fermion Wigner crystal, and also suggest a higher
asymmetry between Wigner crystals of composite fermion particles and holes than
that observed experimentally.Comment: Composite Fermion Wigner Crystal; 14 pages, 9 figure
Exceptionally strong magnetism in 4d perovskites RTcO3 (R=Ca,Sr,Ba)
The evolution of the magnetic ordering temperature of the 4d3 perovskites
RTcO3 (R=Ca,Sr,Ba) and its relation with its electronic and structural
properties has been studied by means of hybrid density functional theory and
Monte Carlo simulations. When compared to the most widely studied 3d
perovskites the large spatial extent of the 4d shells and their relatively
strong hybridization with oxygen weaken the tendency to form Jahn-Teller like
orbital ordering. This strengthens the superexchange interaction. The resulting
insulating G-type antiferromagnetic ground state is characterized by large
superexchange coupling constants (26-35 meV) and Neel temperatures (750-1200
K). These monotonically increase as a function of the R ionic radius due to the
progressive enhancement of the volume and the associated decrease of the
cooperative rotation of the TcO6 octahedra.Comment: 4 pages, 3 figure
- …