1,224 research outputs found

    Nanoscale magnetic structure of ferromagnet/antiferromagnet manganite multilayers

    Full text link
    Polarized Neutron Reflectometry and magnetometry measurements have been used to obtain a comprehensive picture of the magnetic structure of a series of La{2/3}Sr{1/3}MnO{3}/Pr{2/3}Ca{1/3}MnO{3} (LSMO/PCMO) superlattices, with varying thickness of the antiferromagnetic (AFM) PCMO layers (0<=t_A<=7.6 nm). While LSMO presents a few magnetically frustrated monolayers at the interfaces with PCMO, in the latter a magnetic contribution due to FM inclusions within the AFM matrix was found to be maximized at t_A~3 nm. This enhancement of the FM moment occurs at the matching between layer thickness and cluster size, where the FM clusters would find the optimal strain conditions to be accommodated within the "non-FM" material. These results have important implications for tuning phase separation via the explicit control of strain.Comment: 4 pages, submitted to PR

    Effects of Capping on the (Ga,Mn)As Magnetic Depth Profile

    Full text link
    Annealing can increase the Curie temperature and net magnetization in uncapped (Ga,Mn)As films, effects that are suppressed when the films are capped with GaAs. Previous polarized neutron reflectometry (PNR) studies of uncapped (Ga,Mn)As revealed a pronounced magnetization gradient that was reduced after annealing. We have extended this study to (Ga,Mn)As capped with GaAs. We observe no increase in Curie temperature or net magnetization upon annealing. Furthermore, PNR measurements indicate that annealing produces minimal differences in the depth-dependent magnetization, as both as-grown and annealed films feature a significant magnetization gradient. These results suggest that the GaAs cap inhibits redistribution of interstitial Mn impurities during annealing.Comment: 12 pages, 3 figures, submitted to Applied Physics Letter

    The Scent of Collaboration: Exploring the Efect of Smell on Social Interactions

    Get PDF
    Social interactions are multisensory experiences. However, it is not well understood how technology-mediated smell can support social interactions, especially in collaborative tasks. To explore its effect on collaboration, we asked eleven pairs of users to work together on a writing task while wearing an interactive jewellery designed to emit scent in a controlled fashion. In a within-subjects experiment, participants were asked to collaboratively write a story about a standardized visual stimulus while exposed to with scent and without scent conditions. We analyzed video recordings and written stories using a combination of methods from HCI, psychology, sociology, and human communication research. We observed differences in both participants' communication and creation of insightful stories in the with scent condition. Furthermore, scent helped participants recover from communication breakdown even though they were unaware of it. We discuss the possible implications of our findings and the potential of technology-mediated scent for collaborative activities

    Local Nature of Coset Models

    Full text link
    The local algebras of the maximal Coset model C_max associated with a chiral conformal subtheory A\subset B are shown to coincide with the local relative commutants of A in B, provided A contains a stress energy tensor. Making the same assumption, the adjoint action of the unique inner-implementing representation U^A associated with A\subset B on the local observables in B is found to define net-endomorphisms of B. This property is exploited for constructing from B a conformally covariant holographic image in 1+1 dimensions which proves useful as a geometric picture for the joint inclusion A\vee C_max \subset B. Immediate applications to the analysis of current subalgebras are given and the relation to normal canonical tensor product subfactors is clarified. A natural converse of Borchers' theorem on half-sided translations is made accessible.Comment: 33 pages, no figures; typos, minor improvement

    Deformations of quantum field theories on de Sitter spacetime

    Full text link
    Quantum field theories on de Sitter spacetime with global U(1) gauge symmetry are deformed using the joint action of the internal symmetry group and a one-parameter group of boosts. The resulting theory turns out to be wedge-local and non-isomorphic to the initial one for a class of theories, including the free charged Dirac field. The properties of deformed models coming from inclusions of CAR-algebras are studied in detail.Comment: 26 pages, no figure

    A New Approach to Spin and Statistics

    Full text link
    We give an algebraic proof of the spin-statistics connection for the parabosonic and parafermionic quantum topological charges of a theory of local observables with a modular PCT-symmetry. The argument avoids the use of the spinor calculus and also works in 1+2 dimensions. It is expected to be a progress towards a general spin-statistics theorem including also (1+2)-dimensional theories with braid group statistics.Comment: LATEX, 15 pages, no figure

    Percolation of satisfiability in finite dimensions

    Get PDF
    The satisfiability and optimization of finite-dimensional Boolean formulas are studied using percolation theory, rare region arguments, and boundary effects. In contrast with mean-field results, there is no satisfiability transition, though there is a logical connectivity transition. In part of the disconnected phase, rare regions lead to a divergent running time for optimization algorithms. The thermodynamic ground state for the NP-hard two-dimensional maximum-satisfiability problem is typically unique. These results have implications for the computational study of disordered materials.Comment: 4 pages, 4 fig

    Limits of magnetic interactions in Ni-Nb ferromagnet-superconductor bilayers

    Full text link
    Studies of ferromagnet-superconductor hybrid systems have uncovered magnetic interactions between the competing electronic orderings. The Electromagnetic Proximity Effect predicts the formation of a spontaneous vector potential inside a superconductor placed in proximity to a ferromagnet. In this work, we use a Nb superconducting layer and Ni ferromagnetic layer to test for such magnetic interactions. We use the complementary, but independent, techniques of polarised neutron reflectometry and detection Josephson junctions to probe the magnetic response inside the superconducting layer at close to zero applied field. In this condition, Meissner screening is negligible, so our measurements examine only additional magnetic and screening contributions from proximity effects. We report that any signals attributable to such proximity effects are below the detection resolution of our experimental study. We estimate a limit of the size of the zero field Electromagnetic Proximity Effect in our Ni-Nb samples to be ±\pm0.27 mT from our measurements.Comment: Main text 18 pages, 4 figures, 1 table. Plus SI 8 pages, 6 figure

    Hypergraphic LP Relaxations for Steiner Trees

    Get PDF
    We investigate hypergraphic LP relaxations for the Steiner tree problem, primarily the partition LP relaxation introduced by Koenemann et al. [Math. Programming, 2009]. Specifically, we are interested in proving upper bounds on the integrality gap of this LP, and studying its relation to other linear relaxations. Our results are the following. Structural results: We extend the technique of uncrossing, usually applied to families of sets, to families of partitions. As a consequence we show that any basic feasible solution to the partition LP formulation has sparse support. Although the number of variables could be exponential, the number of positive variables is at most the number of terminals. Relations with other relaxations: We show the equivalence of the partition LP relaxation with other known hypergraphic relaxations. We also show that these hypergraphic relaxations are equivalent to the well studied bidirected cut relaxation, if the instance is quasibipartite. Integrality gap upper bounds: We show an upper bound of sqrt(3) ~ 1.729 on the integrality gap of these hypergraph relaxations in general graphs. In the special case of uniformly quasibipartite instances, we show an improved upper bound of 73/60 ~ 1.216. By our equivalence theorem, the latter result implies an improved upper bound for the bidirected cut relaxation as well.Comment: Revised full version; a shorter version will appear at IPCO 2010
    • …
    corecore