147 research outputs found

    Search for the Neutron Decay n→\rightarrow X+γ\gamma where X is a dark matter particle

    Get PDF
    In a recent paper submitted to Physical Review Letters, Fornal and Grinstein have suggested that the discrepancy between two different methods of neutron lifetime measurements, the beam and bottle methods can be explained by a previously unobserved dark matter decay mode, n→\rightarrow X+γ\gamma where X is a dark matter particle. We have performed a search for this decay mode over the allowed range of energies of the monoenergetic gamma ray for X to be a dark matter particle. We exclude the possibility of a sufficiently strong branch to explain the lifetime discrepancy with greater than 4 sigma confidence.Comment: 6 pages 3 figure

    New result for the neutron β-asymmetry parameter A_0 from UCNA

    Get PDF
    Background: The neutron β-decay asymmetry parameter A_0 defines the angular correlation between the spin of the neutron and the momentum of the emitted electron. Values for A_0 permit an extraction of the ratio of the weak axial-vector to vector coupling constants, λ≡gA/gV, which under assumption of the conserved vector current hypothesis (gV=1) determines gA. Precise values for gA are important as a benchmark for lattice QCD calculations and as a test of the standard model. Purpose: The UCNA experiment, carried out at the Ultracold Neutron (UCN) source at the Los Alamos Neutron Science Center, was the first measurement of any neutron β-decay angular correlation performed with UCN. This article reports the most precise result for A_0 obtained to date from the UCNA experiment, as a result of higher statistics and reduced key systematic uncertainties, including from the neutron polarization and the characterization of the electron detector response. Methods: UCN produced via the downscattering of moderated spallation neutrons in a solid deuterium crystal were polarized via transport through a 7 T polarizing magnet and a spin flipper, which permitted selection of either spin state. The UCN were then contained within a 3-m long cylindrical decay volume, situated along the central axis of a superconducting 1 T solenoidal spectrometer. With the neutron spins then oriented parallel or anti-parallel to the solenoidal field, an asymmetry in the numbers of emitted decay electrons detected in two electron detector packages located on both ends of the spectrometer permitted an extraction of A_0. Results: The UCNA experiment reports a new 0.67% precision result for A_0 of A_0=−0.12054(44)_(stat)(68)_(syst), which yields λ=gA/gV=−1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=−0.12015(34)stat(63)syst and λ=gA/gV=−1.2772(20). Conclusions: This new result for A0 and gA/gV from the UCNA experiment has provided confirmation of the shift in values for gA/gV that has emerged in the published results from more recent experiments, which are in striking disagreement with the results from older experiments. Individual systematic corrections to the asymmetries in older experiments (published prior to 2002) were >10%, whereas those in the more recent ones (published after 2002) have been of the scale of <2%. The impact of these older results on the global average will be minimized should future measurements of A0 reach the 0.1% level of precision with central values near the most recent results

    Status of the UCNÏ„ experiment

    Get PDF
    The neutron is the simplest nuclear system that can be used to probe the structure of the weak interaction and search for physics beyond the standard model. Measurements of neutron lifetime and β-decay correlation coefficients with precisions of 0.02% and 0.1%, respectively, would allow for stringent constraints on new physics. The UCNτ experiment uses an asymmetric magneto-gravitational UCN trap with in situ counting of surviving neutrons to measure the neutron lifetime, τ_n = 877.7s (0.7s)_(stat) (+0.4/−0.2s)_(sys). We discuss the recent result from UCNτ, the status of ongoing data collection and analysis, and the path toward a 0.25 s measurement of the neutron lifetime with UCNτ

    Search for dark matter decay of the free neutron from the UCNA experiment: n → χ + e^+e^−

    Get PDF
    It has been proposed recently that a previously unobserved neutron decay branch to a dark matter particle (χ) could account for the discrepancy in the neutron lifetime observed in experiments that use two different measurement techniques. One of the possible final states discussed includes a single χ along with an e^+e^− pair. We use data from the UCNA (Ultracold Neutron Asymmetry) experiment to set limits on this decay channel. Coincident electron-like events are detected with ∼4π acceptance using a pair of detectors that observe a volume of stored Ultracold Neutrons (UCNs). The summed kinetic energy (E_(e^+e^−)) from such events is used to set limits, as a function of the χ mass, on the branching fraction for this decay channel. For χ masses consistent with resolving the neutron lifetime discrepancy, we exclude this as the dominant dark matter decay channel at ≫ 5σlevel for 100 keV 90% confidence level

    New result for the neutron β\beta-asymmetry parameter A0A_0 from UCNA

    Full text link
    The neutron β\beta-decay asymmetry parameter A0A_0 defines the correlation between the spin of the neutron and the momentum of the emitted electron, which determines λ=gAgV\lambda=\frac{g_{A}}{g_{V}}, the ratio of the axial-vector to vector weak coupling constants. The UCNA Experiment, located at the Ultracold Neutron facility at the Los Alamos Neutron Science Center, is the first to measure such a correlation coefficient using ultracold neutrons (UCN). Following improvements to the systematic uncertainties and increased statistics, we report the new result A0=−0.12054(44)stat(68)systA_0 = -0.12054(44)_{\mathrm{stat}}(68)_{\mathrm{syst}} which yields λ≡gAgV=−1.2783(22)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2783(22). Combination with the previous UCNA result and accounting for correlated systematic uncertainties produces A0=−0.12015(34)stat(63)systA_0=-0.12015(34)_{\mathrm{stat}}(63)_{\mathrm{syst}} and λ≡gAgV=−1.2772(20)\lambda\equiv \frac{g_{A}}{g_{V}}=-1.2772(20).Comment: 9 pages, 7 figures, updated to as-published versio

    ChREBP Regulates Fructose-induced Glucose Production Independently of Insulin Signaling

    Get PDF
    Obese, insulin-resistant states are characterized by a paradoxical pathogenic condition in which the liver appears to be selectively insulin resistant. Specifically, insulin fails to suppress glucose production, yet successfully stimulates de novo lipogenesis. The mechanisms underlying this dysregulation remain controversial. Here, we hypothesized that carbohydrate-responsive element-binding protein (ChREBP), a transcriptional activator of glycolytic and lipogenic genes, plays a central role in this paradox. Administration of fructose increased hepatic hexose-phosphate levels, activated ChREBP, and caused glucose intolerance, hyperinsulinemia, hypertriglyceridemia, and hepatic steatosis in mice. Activation of ChREBP was required for the increased expression of glycolytic and lipogenic genes as well as glucose-6-phosphatase (G6pc) that was associated with the effects of fructose administration. We found that fructose-induced G6PC activity is a major determinant of hepatic glucose production and reduces hepatic glucose-6-phosphate levels to complete a homeostatic loop. Moreover, fructose activated ChREBP and induced G6pc in the absence of Foxo1a, indicating that carbohydrate-induced activation of ChREBP and G6PC dominates over the suppressive effects of insulin to enhance glucose production. This ChREBP/G6PC signaling axis is conserved in humans. Together, these findings support a carbohydrate-mediated, ChREBP-driven mechanism that contributes to hepatic insulin resistance
    • …
    corecore