3,706 research outputs found

    Distribution of periodic points of polynomial diffeomorphisms of C^2

    Full text link
    This paper deals with the dynamics of a simple family of holomorphic diffeomorphisms of \C^2: the polynomial automorphisms. This family of maps has been studied by a number of authors. We refer to [BLS] for a general introduction to this class of dynamical systems. An interesting object from the point of view of potential theory is the equilibrium measure μ\mu of the set KK of points with bounded orbits. In [BLS] μ\mu is also characterized dynamically as the unique measure of maximal entropy. Thus μ\mu is also an equilibrium measure from the point of view of the thermodynamical formalism. In the present paper we give another dynamical interpretation of μ\mu as the limit distribution of the periodic points of ff

    Matrix Big Brunch

    Get PDF
    Following the holographic description of linear dilaton null Cosmologies with a Big Bang in terms of Matrix String Theory put forward by Craps, Sethi and Verlinde, we propose an extended background describing a Universe including both Big Bang and Big Crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using Matrix String Theory. We provide a simple theory capable of describing the complete evolution of this closed Universe.Comment: 15 pages, no figures. References adde

    Polynomial diffeomorphisms of C^2, IV: The measure of maximal entropy and laminar currents

    Full text link
    This paper concerns the dynamics of polynomial automorphisms of C2{\bf C}^2. One can associate to such an automorphism two currents μ±\mu^\pm and the equilibrium measure μ=μ+μ\mu=\mu^+\wedge\mu^-. In this paper we study some geometric and dynamical properties of these objects. First, we characterize μ\mu as the unique measure of maximal entropy. Then we show that the measure μ\mu has a local product structure and that the currents μ±\mu^\pm have a laminar structure. This allows us to deduce information about periodic points and heteroclinic intersections. For example, we prove that the support of μ\mu coincides with the closure of the set of saddle points. The methods used combine the pluripotential theory with the theory of non-uniformly hyperbolic dynamical systems

    Adding flavour to twistor strings

    Get PDF
    Twistor string theory is known to describe a wide variety of field theories at tree-level and has proved extremely useful in making substantial progress in perturbative gauge theory. We explore the twistor dual description of a class of N=2 UV-finite super-Yang-Mills theories with fundamental flavour by adding 'flavour' branes to the topological B-model on super-twistor space and comment on the appearance of these objects. Evidence for the correspondence is provided by matching amplitudes on both sides.Comment: 6 pages; contribution to the proceedings for the European Physical Society conference on High Energy Physics in Manchester, 19-25 July 2007. v3: Typos correcte

    Color television study Final report, Nov. 1965 - Mar. 1966

    Get PDF
    Color television camera for transmission from lunar and earth orbits and lunar surfac

    Array E system description

    Get PDF
    This ATM describes the ALSEP Array E System. Its main purpose is to convey an understanding of the Power and Data Subsystems operation to a depth just above the circuit schematic level.written by A. Bedford, J. Kasser, D. Thomas ; approved by D. Fithian.General -- Structure/thermal subsystem -- Power subsystem -- Data subsystem -- Array "E" scientific instrument

    Machine translation project alternatives analysis

    Get PDF
    The Machine Translation Project consists of several components, two of which, the Project Plan and the Requirements Analysis, have already been delivered. The Project Plan details the overall rationale, objectives and time-table for the project as a whole. The Requirements Analysis compares a number of available machine translation systems, their capabilities, possible configurations, and costs. The Alternatives Analysis has resulted in a number of conclusions and recommendations to the NASA STI program concerning the acquisition of specific MT systems and related hardware and software

    Polya's inequalities, global uniform integrability and the size of plurisubharmonic lemniscates

    Full text link
    First we prove a new inequality comparing uniformly the relative volume of a Borel subset with respect to any given complex euclidean ball \B \sub \C^n with its relative logarithmic capacity in \C^n with respect to the same ball \B. An analoguous comparison inequality for Borel subsets of euclidean balls of any generic real subspace of \C^n is also proved. Then we give several interesting applications of these inequalities. First we obtain sharp uniform estimates on the relative size of \psh lemniscates associated to the Lelong class of \psh functions of logarithmic singularities at infinity on \C^n as well as the Cegrell class of \psh functions of bounded Monge-Amp\`ere mass on a hyperconvex domain \W \Sub \C^n. Then we also deduce new results on the global behaviour of both the Lelong class and the Cegrell class of \psh functions.Comment: 25 page
    corecore