29 research outputs found

    Micro-Indentation of Metal Matrix Composites: A 3D Finite Element Analysis

    Get PDF
    This paper investigates the inhomogeneous behavior of MMCs subjected to microindentation by a spherical indenter using 3D finite element analysis. This includes the effects on hardness of volume percentage of reinforced particles and indenter-to-particle diameter-ratio. It was found that the increase of volume percentage of reinforced particles and indenter-to-particle diameterratio increases the resistance to deformation of an MMC. The hardness varies in a complex way with the changes of load, volume percentage of particles and indenter-to-particle diameter-ratio

    Comparative study between wear of uncoated and TiAlN-coated carbide tools in milling of Ti6Al4V

    Get PDF
    As is recognized widely, tool wear is a major problem in the machining of difficult-to-cut titanium alloys. Therefore, it is of significant interest and importance to understand and determine quantitatively and qualitatively tool wear evolution and the underlying wear mechanisms. The main aim of this paper is to investigate and analyse wear, wear mechanisms and surface and chip generation of uncoated and TiAlN-coated carbide tools in a dry milling of Ti6Al4V alloys. The quantitative flank wear and roughness were measured and recorded. Optical and scanning electron microscopy (SEM) observations of the tool cutting edge, machined surface and chips were conducted. The results show that the TiAlN-coated tool exhibits an approximately 44% longer tool life than the uncoated tool at a cutting distance of 16 m. A more regular progressive abrasion between the flank face of the tool and the workpiece is found to be the underlying wear mechanism. The TiAlN-coated tool generates a smooth machined surface with 31% lower roughness than the uncoated tool. As is expected, both tools generate serrated chips. However, the burnt chips with blue color are noticed for the uncoated tool as the cutting continues further. The results are shown to be consistent with observation of other researchers, and further imply that coated tools with appropriate combinations of cutting parameters would be able to increase the tool life in cutting of titanium alloys

    Micro–indentation of metal matrix composites – an FEM investigation

    No full text
    Micro-indentation has been widely used to evaluate the mechanical properties of materials. It has also been considered to be an important measure in the study of machinability of difficult-to-machine materials such as metal matrix composites (MMCs). Because of the complexity of deformation of an MMC and the interaction in the vicinity of contact zone between the indenter and work material, an analytical or experimental method is unable to predict the detailed deformation process. The present paper uses the finite element method to investigate the behaviour of MMCs subjected to micro-indentation by a spherical indenter including the development of stress and strain fields in the MMCs during loading/unloading. Particle fracture, debonding and displacement, and inhomogeneous deformation of matrix material were explored and compared with the experimental results reported in the literature. The analysis also provides an insight for understanding the formation of residual stresses in machined MMC components

    Surface integrity characteristics of machined MMCs

    No full text
    Abstract not available

    Nanomechanical and tribological characterization of silk and silk-titanate composite coatings

    No full text
    This paper investigates the tribological and mechanical properties of silk-based nanocomposite coatings which are finding applications in optics, biomedicine and dentistry, thanks to the exceptional mechanical/optical properties and associated biocompatibility of silk. Three different nanocomposite formulations were synthesized, and thin films were prepared by spin coating at different thicknesses and with different post-deposition annealing processes. Ellipsometry, FTIR spectroscopy, AFM, nanoindentation, scratch testing, continuous/reciprocating wear testing, confocal microscopy and SEM were used to characterize the coatings. The results reveal that their hardness and elastic modulus are in the range 0.56\u20131.30 GPa and 23.6\u201355.4 GPa, respectively, which are much higher than those reported for other silk films in literature. Incorporation of titanate nanosheets also improved coatings\u2019 scratch resistance

    Nanomechanical and tribological characterization of silk and silk-titanate composite coatings

    No full text
    This paper investigates the tribological and mechanical properties of silk-based nanocomposite coatings which are finding applications in optics, biomedicine and dentistry, thanks to the exceptional mechanical/optical properties and associated biocompatibility of silk. Three different nanocomposite formulations were synthesized, and thin films were prepared by spin coating at different thicknesses and with different post-deposition annealing processes. Ellipsometry, FTIR spectroscopy, AFM, nanoindentation, scratch testing, continuous/reciprocating wear testing, confocal microscopy and SEM were used to characterize the coatings. The results reveal that their hardness and elastic modulus are in the range 0.561.30 GPa and 23.655.4 GPa, respectively, which are much higher than those reported for other silk films in literature. Incorporation of titanate nanosheets also improved coatings scratch resistance
    corecore