2,887 research outputs found
Physical Mechanism of the d->d+is Transition
We discuss the basic physical mechanism of the d->d+is transition, which is
the currently accepted explanation for the results of tunneling experiments
into planes. Using the first-order perturbation theory, we show that the
zero-bias states drive the transition. We present various order-of-magnitude
estimates and consistency checks that support this picture.Comment: 7 pages, 2 figure
Positive and negative streamers in ambient air: measuring diameter, velocity and dissipated energy
Positive and negative streamers are studied in ambient air at 1 bar; they
emerge from a needle electrode placed 40 mm above a planar electrode. The
amplitudes of the applied voltage pulses range from 5 to 96 kV; most pulses
have rise times of 30 ns or shorter. Diameters, velocities and energies of the
streamers are measured. Two regimes are identified; a low voltage regime where
only positive streamers appear and a high voltage regime where both positive
and negative streamers exist. Below 5 kV, no streamers emerge. In the range
from 5 to 40 kV, positive streamers form, while the negative discharges only
form a glowing cloud at the electrode tip, but no streamers. For 5 to 20 kV,
diameters and velocities of the positive streamers have the minimal values of
d=0.2 mm and v \approx 10^5 m/s. For 20 to 40 kV, their diameters increase by a
factor 6 while the voltage increases only by a factor 2. Above the transition
value of 40 kV, streamers of both polarities form; they strongly resemble each
other, though the positive ones propagate further; their diameters continue to
increase with applied voltage. For 96 kV, positive streamers attain diameters
of 3 mm and velocities of 4*10^6 m/s, negative streamers are about 20 % slower
and thinner. An empirical fit formula for the relation between velocity v and
diameter d is v=0.5 d^2/(mm ns) for both polarities. Streamers of both
polarities dissipate energies of the order of several mJ per streamer while
crossing the gap.Comment: 20 pages, 9 figures, accepted for J. Phys.
Stabilization of the alleged bishomoromatic bicyclo[3.2.1]octa-2,6-dienyl anion by counterion interactions and by hyperconjugation
Hyperconjugation and inductive effects, rather than homoaromaticity, are responsible for the stabilization of the title anion in the gas phase; interaction of the double bond with the Li+ gegenion in the endo geometry contributes additionally in solution
U-sphere: strengthening scalable flat-name routing for decentralized networks
Supporting decentralized peer-to-peer communication between users is crucial for maintaining privacy and control over personal data. State-of-the-art protocols mostly rely on distributed hash tables (DHTs) in order to enable user-to-user communication. They are thus unable to provide transport address privacy and guaranteed low path stretch while ensuring sub-linear routing state together with tolerance of insider adversaries. In this paper we present U-Sphere, a novel location-independent routing protocol that is tolerant to Sybil adversaries and achieves low O (1) path stretch while maintaining View the MathML source per-node state. Departing from DHT designs, we use a landmark-based construction with node color groupings to aid flat name resolution while maintaining the stretch and state bounds. We completely remove the need for landmark-based location directories and build a name-record dissemination overlay that is able to better tolerate adversarial attacks under the assumption of social trust links established between nodes. We use large-scale emulation on both synthetic and actual network topologies to show that the protocol successfully achieves the scalability goals in addition to mitigating the impact of adversarial attacks
Influence of Matric Suction on the Shear Strength Behaviour of Unsaturated Sand
As a part of the effort made to understand the behaviour of unsaturated soils, this work studies the shear strength characteristics of a cohesionless unsaturated soil. Generally, the determination of the shear strength of unsaturated soils is a great challenge to geotechnical engineers, both in terms of understanding it and the effort necessary to determine it. Matric suction is one of the stress state variables that control the shear strength of unsaturated soils. Therefore, the main aim of this study is to investigate the effect of matric suction on the shear strength characteristic of sand known commercially as Sand PR33. The shear strength behaviour of unsaturated sand is studied in this work using the constant water content triaxial test method with measurements of matric suction during the shearing stage. The tests were performed using the axis translation technique in such a way that the pore-air pressure was controlled while the pore-water pressure was measured during all tests
- …