45,976 research outputs found
Peeling and Sliding in Nucleosome Repositioning
We investigate the mechanisms of histone sliding and detachment with a
stochastic model that couples thermally-induced, passive histone sliding with
active motor-driven histone unwrapping. Analysis of a passive loop or twist
defect-mediated histone sliding mechanism shows that diffusional sliding is
enhanced as larger portions of the DNA is peeled off the histone. The mean
times to histone detachment and the mean distance traveled by the motor complex
prior to histone detachment are computed as functions of the intrinsic speed of
the motor. Fast motors preferentially induce detachment over sliding. However,
for a fixed motor speed, increasing the histone-DNA affinity (and thereby
decreasing the passive sliding rate) increases the mean distance traveled by
the motor.Comment: 5 pp, 4 fig
New Detectors to Explore the Lifetime Frontier
Long-lived particles (LLPs) are a common feature in many beyond the Standard
Model theories, including supersymmetry, and are generically produced in exotic
Higgs decays. Unfortunately, no existing or proposed search strategy will be
able to observe the decay of non-hadronic electrically neutral LLPs with masses
above GeV and lifetimes near the limit set by Big Bang Nucleosynthesis
(BBN), ~m. We propose the MATHUSLA surface
detector concept (MAssive Timing Hodoscope for Ultra Stable neutraL pArticles),
which can be implemented with existing technology and in time for the high
luminosity LHC upgrade to find such ultra-long-lived particles (ULLPs), whether
produced in exotic Higgs decays or more general production modes. We also
advocate for a dedicated LLP detector at a future 100 TeV collider, where a
modestly sized underground design can discover ULLPs with lifetimes at the BBN
limit produced in sub-percent level exotic Higgs decays.Comment: 7 pages, 4 figures. Added more detail to discussion of backgrounds.
Various minor clarifications. Results and conclusions unchange
Finite-size effect of antiferromagnetic transition and electronic structure in LiFePO4
The finite-size effect on the antiferromagnetic (AF) transition and
electronic configuration of iron has been observed in LiFePO4. Determination of
the scaling behavior of the AF transition temperature (TN) versus the
particle-size dimension (L) in the critical regime 1-TN(L)/TN(XTL)\simL^-1
reveals that the activation nature of the AF ordering strongly depends on the
surface energy. In addition, the effective magnetic moment that reflects the
electronic configuration of iron in LiFePO4 is found to be sensitive to the
particle size. An alternative structural view based on the polyatomic ion
groups of (PO4)3- is proposed.Comment: To be published in Phys. Rev. B - Rapid Communicatio
Mechanism of formation of half-doped stripes in underdoped cuprates
Using a variational Monte-Carlo approach with a recently proposed stripe wave
function, we showed that the strong correlation included in a t-J-type model
has essentially all the necessary ingredients to form these stripes with
modulations of charge density, spin magnetization, and pair field. If a
perturbative effect of electron-phonon coupling to renormalize the effective
mass or the hopping rate of holes is considered with the model, we find the
half-doped stripes, which has on the average one half of a hole in one period
of charge modulation, to be most stable, energetic wise in the underdoped
region, . This is in good agreement with the observation
in the neutron scattering experiments. We also find long range Coulomb
interaction to be less effective in the formation of half-doped stripes.Comment: 4 pages, 4 figure
Research study on materials processing in space experiment number M512: Nickel - 12 wt percent tin alloy evaluation
Nickel-tin (12 wt percent tin) samples were processed in the sphere forming experiment on Skylab 2. The results were characterized for sphericity, density, microhardness, porosity, surface morphology, segregation, chemical composition, Curie point, and crystallography. These results are discussed along with conclusions and recommendations
Critical properties of the unconventional spin-Peierls system TiOBr
We have performed detailed x-ray scattering measurements on single crystals
of the spin-Peierls compound TiOBr in order to study the critical properties of
the transition between the incommensurate spin-Peierls state and the
paramagnetic state at Tc2 ~ 48 K. We have determined a value of the critical
exponent beta which is consistent with the conventional 3D universality
classes, in contrast with earlier results reported for TiOBr and TiOCl. Using a
simple power law fit function we demonstrate that the asymptotic critical
regime in TiOBr is quite narrow, and obtain a value of beta_{asy} = 0.32 +/-
0.03 in the asymptotic limit. A power law fit function which includes the first
order correction-to-scaling confluent singularity term can be used to account
for data outside the asymptotic regime, yielding a more robust value of
beta_{avg} = 0.39 +/- 0.05. We observe no evidence of commensurate fluctuations
above Tc1 in TiOBr, unlike its isostructural sister compound TiOCl. In
addition, we find that the incommensurate structure between Tc1 and Tc2 is
shifted in Q-space relative to the commensurate structure below Tc1.Comment: 12 pages, 8 figures. Submitted to Physical Review
- …
