4,706 research outputs found
Searching for degeneracies of real Hamiltonians using homotopy classification of loops in SO()
Topological tests to detect degeneracies of Hamiltonians have been put
forward in the past. Here, we address the applicability of a recently proposed
test [Phys. Rev. Lett. {\bf 92}, 060406 (2004)] for degeneracies of real
Hamiltonian matrices. This test relies on the existence of nontrivial loops in
the space of eigenbases SO. We develop necessary means to determine the
homotopy class of a given loop in this space. Furthermore, in cases where the
dimension of the relevant Hilbert space is large the application of the
original test may not be immediate. To remedy this deficiency, we put forward a
condition for when the test is applicable to a subspace of Hilbert space.
Finally, we demonstrate that applying the methodology of [Phys. Rev. Lett. {\bf
92}, 060406 (2004)] to the complex Hamiltonian case does not provide any new
information.Comment: Minor changes, journal reference adde
The Outburst of the Blazar AO 0235+164 in 2006 December: Shock-in-Jet Interpretation
We present the results of polarimetric ( band) and multicolor photometric
() observations of the blazar AO 0235+16 during an outburst in 2006
December. The data reveal a short timescale of variability (several hours),
which increases from optical to near-IR wavelengths; even shorter variations
are detected in polarization. The flux density correlates with the degree of
polarization, and at maximum degree of polarization the electric vector tends
to align with the parsec-scale jet direction. We find that a variable component
with a steady power-law spectral energy distribution and very high optical
polarization (30-50%) is responsible for the variability. We interpret these
properties of the blazar withina model of a transverse shock propagating down
the jet. In this case a small change in the viewing angle of the jet, by
, and a decrease in the shocked plasma compression by a factor of
1.5 are sufficient to account for the variability.Comment: 22 pages, 8 figures, accepted for Ap
Galilean Lee Model of the Delta Function Potential
The scattering cross section associated with a two dimensional delta function
has recently been the object of considerable study. It is shown here that this
problem can be put into a field theoretical framework by the construction of an
appropriate Galilean covariant theory. The Lee model with a standard Yukawa
interaction is shown to provide such a realization. The usual results for delta
function scattering are then obtained in the case that a stable particle exists
in the scattering channel provided that a certain limit is taken in the
relevant parameter space. In the more general case in which no such limit is
taken finite corrections to the cross section are obtained which (unlike the
pure delta function case) depend on the coupling constant of the model.Comment: 7 pages, latex, no figure
Berry's Phase in the Presence of a Stochastically Evolving Environment: A Geometric Mechanism for Energy-Level Broadening
The generic Berry phase scenario in which a two-level system is coupled to a
second system whose dynamical coordinate is slowly-varying is generalized to
allow for stochastic evolution of the slow system. The stochastic behavior is
produced by coupling the slow system to a heat resevoir which is modeled by a
bath of harmonic oscillators initially in equilibrium at temperature T, and
whose spectral density has a bandwidth which is small compared to the
energy-level spacing of the fast system. The well-known energy-level shifts
produced by Berry's phase in the fast system, in conjunction with the
stochastic motion of the slow system, leads to a broadening of the fast system
energy-levels. In the limit of strong damping and sufficiently low temperature,
we determine the degree of level-broadening analytically, and show that the
slow system dynamics satisfies a Langevin equation in which Lorentz-like and
electric-like forces appear as a consequence of geometrical effects. We also
determine the average energy-level shift produced in the fast system by this
mechanism.Comment: 29 pages, RevTex, submitted to Phys. Rev.
Born-Oppenheimer Approximation near Level Crossing
We consider the Born-Oppenheimer problem near conical intersection in two
dimensions. For energies close to the crossing energy we describe the wave
function near an isotropic crossing and show that it is related to generalized
hypergeometric functions 0F3. This function is to a conical intersection what
the Airy function is to a classical turning point. As an application we
calculate the anomalous Zeeman shift of vibrational levels near a crossing.Comment: 8 pages, 1 figure, Lette
Non-equilibrium excitation of methanol in Galactic molecular clouds: multi-transitional observations at 2 mm
We observed 14 methanol transitions near lambda=2 mm in Galactic star-forming
regions. Broad, quasi-thermal J(0)-J(-1)E methanol lines near 157 GHz were
detected toward 73 sources. Together with the 6(-1)-5(0)E and 5(-2)-6(-1)E
lines at 133 GHz and the 7(1)-7(0)E line at 165 GHz, they were used to study
the methanol excitation. In the majority of the observed objects, the Class I
6(-1)-5(0)E transition is inverted, and the Class II 5(-2)-6(-1)E and
6(0)-6(-1)E transitions are overcooled. This is exactly as predicted by models
of low gain Class I masers. The absence of the inversion of Class II
transitions 5(-2)-6(-1)E and 6(0)-6(-1)E means that quasi-thermal methanol
emission in all objects arises in areas without a strong radiation field, which
is required for the inversion.Comment: 23 pages paper (uses aasms4.sty), 12 pages tables (uses apjpt4.sty),
10 Jpeg figures, submitted to the ApJ
The Born Oppenheimer wave function near level crossing
The standard Born Oppenheimer theory does not give an accurate description of
the wave function near points of level crossing. We give such a description
near an isotropic conic crossing, for energies close to the crossing energy.
This leads to the study of two coupled second order ordinary differential
equations whose solution is described in terms of the generalized
hypergeometric functions of the kind 0F3(;a,b,c;z). We find that, at low
angular momenta, the mixing due to crossing is surprisingly large, scaling like
\mu^(1/6), where \mu is the electron to nuclear mass ratio.Comment: 21 pages, 7 figure
Non-Abelian Geometrical Phase for General Three-Dimensional Quantum Systems
Adiabatic geometric phases are studied for arbitrary quantum systems
with a three-dimensional Hilbert space. Necessary and sufficient conditions for
the occurrence of the non-Abelian geometrical phases are obtained without
actually solving the full eigenvalue problem for the instantaneous Hamiltonian.
The parameter space of such systems which has the structure of \xC P^2 is
explicitly constructed. The results of this article are applicable for
arbitrary multipole interaction Hamiltonians and their linear combinations for spin systems. In particular it
is shown that the nuclear quadrupole Hamiltonian does actually
lead to non-Abelian geometric phases for . This system, being bosonic, is
time-reversal-invariant. Therefore it cannot support Abelian adiabatic
geometrical phases.Comment: Plain LaTeX, 17 page
Color Variability of the Blazar AO 0235+16
Multicolor (UBVRIJHK) observations of the blazar AO 0235+16 are analyzed. The
light curves were compiled at the Turin Observatory from literature data and
the results of observations obtained in the framework of the WEBT program
(http://www.to.astro/blazars/webt/). The color variability of the blazar was
studied in eight time intervals with a sufficient number of multicolor optical
observations; JHK data are available for only one of these. The spectral energy
distribution (SED) of the variable component remained constant within each
interval, but varied strongly from one interval to another. After correction
for dust absorption, the SED can be represented by a power law in all cases,
providing evidence for a synchrotron nature of the variable component. We show
that the variability at both optical and IR wavelengths is associated with the
same variable source.Comment: 11 pages, 9 figures, 4 tables, accepted for publication in Astronomy
Report
- âŠ