505 research outputs found

    Unstable Dynamics, Nonequilibrium Phases and Criticality in Networked Excitable Media

    Full text link
    Here we numerically study a model of excitable media, namely, a network with occasionally quiet nodes and connection weights that vary with activity on a short-time scale. Even in the absence of stimuli, this exhibits unstable dynamics, nonequilibrium phases -including one in which the global activity wanders irregularly among attractors- and 1/f noise while the system falls into the most irregular behavior. A net result is resilience which results in an efficient search in the model attractors space that can explain the origin of certain phenomenology in neural, genetic and ill-condensed matter systems. By extensive computer simulation we also address a relation previously conjectured between observed power-law distributions and the occurrence of a "critical state" during functionality of (e.g.) cortical networks, and describe the precise nature of such criticality in the model.Comment: 18 pages, 9 figure

    Construction of an isotropic cellular automaton for a reaction-diffusion equation by means of a random walk

    Full text link
    We propose a new method to construct an isotropic cellular automaton corresponding to a reaction-diffusion equation. The method consists of replacing the diffusion term and the reaction term of the reaction-diffusion equation with a random walk of microscopic particles and a discrete vector field which defines the time evolution of the particles. The cellular automaton thus obtained can retain isotropy and therefore reproduces the patterns found in the numerical solutions of the reaction-diffusion equation. As a specific example, we apply the method to the Belousov-Zhabotinsky reaction in excitable media

    A propensity criterion for networking in an array of coupled chaotic systems

    Full text link
    We examine the mutual synchronization of a one dimensional chain of chaotic identical objects in the presence of a stimulus applied to the first site. We first describe the characteristics of the local elements, and then the process whereby a global nontrivial behaviour emerges. A propensity criterion for networking is introduced, consisting in the coexistence within the attractor of a localized chaotic region, which displays high sensitivity to external stimuli,and an island of stability, which provides a reliable coupling signal to the neighbors in the chain. Based on this criterion we compare homoclinic chaos, recently explored in lasers and conjectured to be typical of a single neuron, with Lorenz chaos.Comment: 4 pages, 3 figure

    Border Avoidance: Necessary Regularity for Coefficients and Viscosity Approach

    Full text link
    Motivated by the result of invariance of regular-boundary open sets in \cite{CannarsaDaPratoFrankowska2009} and multi-stability issues in gene networks, our paper focuses on three closely related aims. First, we give a necessary local Lipschitz-like condition in order to expect invariance of open sets (for deterministic systems). Comments on optimality are provided via examples. Second, we provide a border avoidance (near-viability) counterpart of \cite{CannarsaDaPratoFrankowska2009} for controlled Brownian diffusions and piecewise deterministic switched Markov processes (PDsMP). We equally discuss to which extent Lipschitz-continuity of the driving coefficients is needed. Finally, by applying the theoretical result on PDsMP to Hasty's model of bacteriophage (\cite{hasty\_pradines\_dolnik\_collins\_00}, \cite{crudu\_debussche\_radulescu\_09}), we show the necessity of explicit modeling for the environmental cue triggering lysis

    Noise Induced Coherence in Neural Networks

    Full text link
    We investigate numerically the dynamics of large networks of NN globally pulse-coupled integrate and fire neurons in a noise-induced synchronized state. The powerspectrum of an individual element within the network is shown to exhibit in the thermodynamic limit (NN\to \infty) a broadband peak and an additional delta-function peak that is absent from the powerspectrum of an isolated element. The powerspectrum of the mean output signal only exhibits the delta-function peak. These results are explained analytically in an exactly soluble oscillator model with global phase coupling.Comment: 4 pages ReVTeX and 3 postscript figure

    Model of the Hippocampal Learning of Spatio-temporal Sequences

    Full text link

    Invariance Conditions for Nonlinear Dynamical Systems

    Full text link
    Recently, Horv\'ath, Song, and Terlaky [\emph{A novel unified approach to invariance condition of dynamical system, submitted to Applied Mathematics and Computation}] proposed a novel unified approach to study, i.e., invariance conditions, sufficient and necessary conditions, under which some convex sets are invariant sets for linear dynamical systems. In this paper, by utilizing analogous methodology, we generalize the results for nonlinear dynamical systems. First, the Theorems of Alternatives, i.e., the nonlinear Farkas lemma and the \emph{S}-lemma, together with Nagumo's Theorem are utilized to derive invariance conditions for discrete and continuous systems. Only standard assumptions are needed to establish invariance of broadly used convex sets, including polyhedral and ellipsoidal sets. Second, we establish an optimization framework to computationally verify the derived invariance conditions. Finally, we derive analogous invariance conditions without any conditions

    General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems

    Full text link
    An asymptotic method for finding instabilities of arbitrary dd-dimensional large-amplitude patterns in a wide class of reaction-diffusion systems is presented. The complete stability analysis of 2- and 3-dimensional localized patterns is carried out. It is shown that in the considered class of systems the criteria for different types of instabilities are universal. The specific nonlinearities enter the criteria only via three numerical constants of order one. The performed analysis explains the self-organization scenarios observed in the recent experiments and numerical simulations of some concrete reaction-diffusion systems.Comment: 21 pages (RevTeX), 8 figures (Postscript). To appear in Phys. Rev. E (April 1st, 1996

    Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling

    Full text link
    Small lattices of NN nearest neighbor coupled excitable FitzHugh-Nagumo systems, with time-delayed coupling are studied, and compared with systems of FitzHugh-Nagumo oscillators with the same delayed coupling. Bifurcations of equilibria in N=2 case are studied analytically, and it is then numerically confirmed that the same bifurcations are relevant for the dynamics in the case N>2N>2. Bifurcations found include inverse and direct Hopf and fold limit cycle bifurcations. Typical dynamics for different small time-lags and coupling intensities could be excitable with a single globally stable equilibrium, asymptotic oscillatory with symmetric limit cycle, bi-stable with stable equilibrium and a symmetric limit cycle, and again coherent oscillatory but non-symmetric and phase-shifted. For an intermediate range of time-lags inverse sub-critical Hopf and fold limit cycle bifurcations lead to the phenomenon of oscillator death. The phenomenon does not occur in the case of FitzHugh-Nagumo oscillators with the same type of coupling.Comment: accepted by Phys.Rev.

    Structural Stability and Renormalization Group for Propagating Fronts

    Full text link
    A solution to a given equation is structurally stable if it suffers only an infinitesimal change when the equation (not the solution) is perturbed infinitesimally. We have found that structural stability can be used as a velocity selection principle for propagating fronts. We give examples, using numerical and renormalization group methods.Comment: 14 pages, uiucmac.tex, no figure
    corecore