857 research outputs found

    Bell's Theorem and Nonlinear Systems

    Full text link
    For all Einstein-Podolsky-Rosen-type experiments on deterministic systems the Bell inequality holds, unless non-local interactions exist between certain parts of the setup. Here we show that in nonlinear systems the Bell inequality can be violated by non-local effects that are arbitrarily weak. Then we show that the quantum result of the existing Einstein-Podolsky-Rosen-type experiments can be reproduced within deterministic models that include arbitrarily weak non-local effects.Comment: Accepted for publication in Europhysics Letters. 14 pages, no figures. In the Appendix (not included in the EPL version) the author says what he really thinks about the subjec

    Strict detector-efficiency bounds for n-site Clauser-Horne inequalities

    Get PDF
    An analysis of detector-efficiency in many-site Clauser-Horne inequalities is presented, for the case of perfect visibility. It is shown that there is a violation of the presented n-site Clauser-Horne inequalities if and only if the efficiency is greater than n/(2n-1). Thus, for a two-site two-setting experiment there are no quantum-mechanical predictions that violate local realism unless the efficiency is greater than 2/3. Secondly, there are n-site experiments for which the quantum-mechanical predictions violate local realism whenever the efficiency exceeds 1/2.Comment: revtex, 5 pages, 1 figure (typesetting changes only

    Entropy inequalities and Bell inequalities for two-qubit systems

    Get PDF
    Sufficient conditions for (the non-violation of) the Bell-CHSH inequalities in a mixed state of a two-qubit system are: 1) The linear entropy of the state is not smaller than 0.5, 2) The sum of the conditional linear entropies is non-negative, 3) The von Neumann entropy is not smaller than 0.833, 4) The sum of the conditional von Neumann entropies is not smaller than 0.280.Comment: Errors corrected. See L. Jakobcyk, quant-ph/040908

    General criterion for the entanglement of two indistinguishable particles

    Full text link
    We relate the notion of entanglement for quantum systems composed of two identical constituents to the impossibility of attributing a complete set of properties to both particles. This implies definite constraints on the mathematical form of the state vector associated with the whole system. We then analyze separately the cases of fermion and boson systems, and we show how the consideration of both the Slater-Schmidt number of the fermionic and bosonic analog of the Schmidt decomposition of the global state vector and the von Neumann entropy of the one-particle reduced density operators can supply us with a consistent criterion for detecting entanglement. In particular, the consideration of the von Neumann entropy is particularly useful in deciding whether the correlations of the considered states are simply due to the indistinguishability of the particles involved or are a genuine manifestation of the entanglement. The treatment leads to a full clarification of the subtle aspects of entanglement of two identical constituents which have been a source of embarrassment and of serious misunderstandings in the recent literature.Comment: 18 pages, Latex; revised version: Section 3.2 rewritten, new Theorems added, reference [1] corrected. To appear on Phys.Rev.A 70, (2004

    Nonlocal effects in Fock space

    Full text link
    If a physical system contains a single particle, and if two distant detectors test the presence of linear superpositions of one-particle and vacuum states, a violation of classical locality can occur. It is due to the creation of a two-particle component by the detecting process itself.Comment: final version in PRL 74 (1995) 4571; 76 (1996) 2205 (erratum

    The wave nature of biomolecules and fluorofullerenes

    Full text link
    We demonstrate quantum interference for tetraphenylporphyrin, the first biomolecule exhibiting wave nature, and for the fluorofullerene C60F48 using a near-field Talbot-Lau interferometer. For the porphyrins, which are distinguished by their low symmetry and their abundant occurence in organic systems, we find the theoretically expected maximal interference contrast and its expected dependence on the de Broglie wavelength. For C60F48 the observed fringe visibility is below the expected value, but the high contrast still provides good evidence for the quantum character of the observed fringe pattern. The fluorofullerenes therefore set the new mark in complexity and mass (1632 amu) for de Broglie wave experiments, exceeding the previous mass record by a factor of two.Comment: 5 pages, 4 figure

    Quantum analogues of Hardy's nonlocality paradox

    Full text link
    Hardy's nonlocality is a "nonlocality proof without inequalities": it exemplifies that quantum correlations can be qualitatively stronger than classical correlations. This paper introduces variants of Hardy's nonlocality in the CHSH scenario which are realized by the PR-box, but not by quantum correlations. Hence this new kind of Hardy-type nonlocality is a proof without inequalities showing that superquantum correlations can be qualitatively stronger than quantum correlations.Comment: minor fixe

    Does Clauser-Horne-Shimony-Holt Correlation or Freedman-Clauser Correlation lead to the largest violation of Bell's Inequality?

    Get PDF
    An inequality is deduced from Einstein's locality and a supplementary assumption. This inequality defines an experiment which can actually be performed with present technology to test local realism. Quantum mechanics violate this inequality a factor of 1.5. In contrast, quantum mechanics violates previous inequalities (for example, Clauser-Horne-Shimony-Holt inequality of 1969, Freedman-Clauser inequality of 1972, Clauser-Horne inequality of 1974) by a factor of 2\sqrt 2. Thus the magnitude of violation of the inequality derived in this paper is approximately 20.720.7% larger than the magnitude of violation of previous inequalities. This result can be particularly important for the experimental test of locality.Comment: 15 pages, LaTeX file, no figure

    Continuous input nonlocal games

    Full text link
    We present a family of nonlocal games in which the inputs the players receive are continuous. We study three representative members of the family. For the first two a team sharing quantum correlations (entanglement) has an advantage over any team restricted to classical correlations. We conjecture that this is true for the third member of the family as well.Comment: Journal version, slight modification

    Proof of Kolmogorovian Censorship

    Get PDF
    Many argued (Accardi and Fedullo, Pitowsky) that Kolmogorov's axioms of classical probability theory are incompatible with quantum probabilities, and this is the reason for the violation of Bell's inequalities. Szab\'o showed that, in fact, these inequalities are not violated by the experimentally observed frequencies if we consider the real, ``effective'' frequencies. We prove in this work a theorem which generalizes this result: ``effective'' frequencies associated to quantum events always admit a Kolmogorovian representation, when these events are collected through different experimental set ups, the choice of which obeys a classical distribution.Comment: 19 pages, LaTe
    • …
    corecore